A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting

Integration of mm-wave multiple-antenna systems on silicon-based processes enables complex, low-cost systems for high-frequency communication and sensing applications. In this paper, the transmitter and LO-path phase-shifting sections of the first fully integrated 77-GHz phased-array transceiver are presented. The SiGe transceiver utilizes a local LO-path phase-shifting architecture to achieve beam steering and includes four transmit and receive elements, along with the LO frequency generation and distribution circuitry. The local LO-path phase-shifting scheme enables a robust distribution network that scales well with increasing frequency and/or number of elements while providing high-resolution phase shifts. Each element of the heterodyne transmitter generates +12.5 dBm of output power at 77 GHz with a bandwidth of 2.5 GHz leading to a 4-element effective isotropic radiated power (EIRP) of 24.5 dBm. Each on-chip PA has a maximum saturated power of +17.5 dBm at 77 GHz. The phased-array performance is measured using an internal test option and achieves 12-dB peak-to-null ratio with two transmit and receive elements active

[1]  A. Hajimiri,et al.  A 77GHz 4-Element Phased Array Receiver with On-Chip Dipole Antennas in Silicon , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[2]  B.-E. Tullsson Alternative applications for a 77 GHz automotive radar , 2000, Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037].

[3]  Hossein Hashemi,et al.  Integrated Phased Array Systems in Silicon , 2005, Proceedings of the IEEE.

[4]  A. Tessmann,et al.  A 94 GHz single-chip FMCW radar module for commercial sensor applications , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[5]  Thomas H. Lee,et al.  Multi-GHz Frequency Synthesis & Division: Frequency Synthesizer Design for 5 GHz Wireless LAN Systems , 2001 .

[6]  Brian Ellis The Design of CMOS Radio-Frequency Integrated Circuits , 2004 .

[7]  J. Paramesh,et al.  A four-antenna receiver in 90-nm CMOS for beamforming and spatial diversity , 2005, IEEE Journal of Solid-State Circuits.

[8]  P. Wennekers,et al.  An integrated SiGe transmitter circuit for 24 GHz radar sensors , 2002, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting.

[9]  S. Jeng,et al.  Self-aligned SiGe NPN transistors with 285 GHz f/sub MAX/ and 207 GHz f/sub T/ in a manufacturable technology , 2002, IEEE Electron Device Letters.

[10]  David R. Greenberg,et al.  Scaling of SiGe Heterojunction Bipolar Transistors , 2005, Proceedings of the IEEE.

[11]  B. Gaucher,et al.  SiGe bipolar transceiver circuits operating at 60 GHz , 2005, IEEE Journal of Solid-State Circuits.

[12]  M. Chua,et al.  1 GHz programmable analog phase shifter for adaptive antennas , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[13]  A. Hajimiri,et al.  A 77GHz Phased-Array Transmitter with Local LO-Path Phase-Shifting in Silicon , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[14]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[15]  I. Gresham,et al.  Ultra-wideband radar sensors for short-range vehicular applications , 2004, IEEE Transactions on Microwave Theory and Techniques.

[16]  Xiang Guan,et al.  MICROWAVE INTEGRATED PHASED ARRAY RECEIVERS IN SILICON , 2006 .

[17]  H. Kondoh,et al.  77GHz MMIC transceiver modules with thick-film multi-layer ceramic substrate for automotive radar applications , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[18]  A. Hajimiri,et al.  A fully integrated 24-GHz phased-array transmitter in CMOS , 2005, IEEE Journal of Solid-State Circuits.

[19]  Xiang Guan,et al.  A fully integrated 24-GHz eight-element phased-array receiver in silicon , 2004, IEEE Journal of Solid-State Circuits.

[20]  D. Parker,et al.  Microwave industry outlook - defense applications , 2002 .

[21]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[22]  D.J. Allstot,et al.  A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[23]  H. Hashemi,et al.  A 24-GHz SiGe phased-array receiver-LO phase-shifting approach , 2005, IEEE Transactions on Microwave Theory and Techniques.

[24]  Ali Hajimiri,et al.  A wideband 77GHz, 17.5dBm power amplifier in silicon , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[25]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.

[26]  A. Hajimiri,et al.  A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon , 2006, IEEE Journal of Solid-State Circuits.

[27]  D. Parker,et al.  Phased arrays - part 1: theory and architectures , 2002 .

[28]  J. Roderick,et al.  Silicon-Based Ultra-Wideband Beam-Forming , 2006, IEEE Journal of Solid-State Circuits.

[29]  B. Floyd,et al.  Millimeter-Wave Lange and Ring-Hybrid Couplers in a Silicon Technology for E-Band Applications , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[30]  K. J. Russell,et al.  Microwave Power Combining Techniques , 1979 .

[31]  Werner Wiesbeck,et al.  Interference from 24-GHz automotive radars to passive microwave earth remote sensing satellites , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Dong Min Kang,et al.  A 77GHz automotive radar MMIC chip set fabricated by a 0.15/spl mu/m MHEMT technology , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[33]  J. Wenger,et al.  Automotive radar - status and perspectives , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..