Thermodynamic modeling of the LiCoO 2CoO 2 pseudo-binary system

Abstract The thermodynamic modeling of the LiCoO 2 –CoO 2 pseudo-binary system, a positive electrode material of Li-ion batteries, was performed using the CALPHAD technique. The O3-LiCoO 2 and the O1-CoO 2 phases were described using the four-sublattice model with the formula (Li,V a) 1/2 (Li,V a) 1/2 (Co) 1 (O) 2 , and the three-sublattice model with the formula (Li,V a) 1 (Co) 1 (O) 2 . The H1_3 hybrid phase was treated as a non-stoichiometric compound. The thermodynamic quantities, such as the phase equilibria, formation enthalpies and cell voltage (vs. Li/Li + ), were in agreement with data reported in the literature.

[1]  A. Dinsdale SGTE data for pure elements , 1991 .

[2]  B. Fultz,et al.  Hexagonal to Cubic Spinel Transformation in Lithiated Cobalt Oxide , 2004 .

[3]  Laurence Croguennec,et al.  On the metastable O2-type LiCoO2 , 2001 .

[4]  X-ray diffraction study on LixCoO2 below ambient temperature , 2009 .

[5]  T. Motohashi,et al.  Synthesis and Properties of CoO2, the x = 0 End Member of the LixCoO2 and NaxCoO2 Systems. , 2007, 0708.2528.

[6]  Y. Shao-horn,et al.  Oxygen Vacancies and Intermediate Spin Trivalent Cobalt Ions in Lithium-Overstoichiometric LiCoO2 , 2003 .

[7]  A. Amato,et al.  Micro- and macroscopic magnetism on layered cobalt dioxide LixCoO2 (0.1⩽x⩽1) , 2008 .

[8]  A. Navrotsky,et al.  Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1−xCoxO2 , 2004 .

[9]  Ermete Antolini,et al.  Synthesis and Thermal Stability of LiCoO2 , 1995 .

[10]  Tadeusz Bak,et al.  Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties , 1989 .

[11]  A. Manthiram,et al.  Synthesis and characterization of P3-type CoO2-δ , 2002 .

[12]  Jun Liu,et al.  Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management , 2010 .

[13]  A. Zunger,et al.  First-principles theory of cation and intercalation ordering in LixCoO2 , 1999 .

[14]  B. Fultz,et al.  Entropy of Li intercalation in LixCoO2 , 2004 .

[15]  G. Gavrila,et al.  Electronic structure and x-ray spectra of defective oxides LixCoO2 , 2006 .

[16]  I. Uchida,et al.  Structure and electron density analysis of electrochemically and chemically delithiated LiCoO2 single crystals , 2007 .

[17]  Xiao‐Qing Yang,et al.  New phases and phase transitions observed in over-charged states of LiCoO2-based cathode materials , 2001 .

[18]  J. Tarascon,et al.  In Situ Structural and Electrochemical Study of Ni1-xCoxO2 Metastable Oxides Prepared by Soft Chemistry , 1999 .

[19]  C A Marianetti,et al.  A first-order Mott transition in LixCoO2 , 2004, Nature materials.

[20]  J. Tarascon,et al.  Structural study of NiO2 and CoO2 as end members of the lithiated compounds by in situ high resolution X-ray powder diffraction , 1999 .

[21]  Gerbrand Ceder,et al.  First‐Principles Evidence for Stage Ordering in Li x CoO2 , 1998 .

[22]  T. Motohashi,et al.  Measurement of electron correlations in LixCoO2 (x=0.0-0.35) using 59Co nuclear magnetic resonance and nuclear quadrupole resonance techniques , 2009, 0906.0400.

[23]  E. Antolini Preparation and properties of LiCoO compounds , 1998 .

[24]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[25]  J. White,et al.  Equilibrium relationships in the system NiO-CoO-O2 , 1974 .

[26]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[27]  R. Cava,et al.  Magnetism and structure of LixCoO2 and comparison to NaxCoO2 , 2007, 0710.3767.

[28]  J. Dahn,et al.  Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V , 2004 .

[29]  A. Manthiram,et al.  Phase Relationships and Structural and Chemical Stabilities of Charged Li1 − x CoO2 − δ and Li1 − x Ni0.85Co0.15 O 2 − δ Cathodes , 2003 .

[30]  T. Matsue,et al.  In situ conductivity measurements of LiCoO2 film during lithium insertion/extraction by using interdigitated microarray electrodes , 1996 .

[31]  Ryoji Kanno,et al.  Low temperature heat capacity and thermodynamic functions of LiCoO2 , 2002 .

[32]  B. Sundman,et al.  On the compound Energy Formalism applied to fcc ordering , 2001 .

[33]  N. Sakai,et al.  Thermodynamic determining factors of the positive electrode potential of lithium batteries , 1998 .

[34]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[35]  W. David,et al.  A reinvestigation of the structures of lithium-cobalt-oxides with neutron-diffraction data , 1993 .

[36]  L. Gauckler,et al.  Thermodynamic assessment of the Co-O system , 2003 .

[37]  Fan Zhang,et al.  The PANDAT software package and its applications , 2002 .

[38]  J. Akimoto,et al.  Synthesis and Structure Refinement of LiCoO2Single Crystals , 1998 .

[39]  B. Borie,et al.  Alkali Metal-Nickel Oxides of the Type MNiO2 , 1954 .

[40]  R. Huggins,et al.  Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials , 1980 .

[41]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[42]  A. Amato,et al.  Magnetic phase diagram of layered cobalt dioxide LixCoO2. , 2007, Physical review letters.

[43]  Jeremy Barker,et al.  Cathode materials for lithium rocking chair batteries , 1996 .

[44]  Kuiper,et al.  Electronic structure of CoO, Li-doped CoO, and LiCoO2. , 1991, Physical review. B, Condensed matter.

[45]  Michael M. Thackeray,et al.  Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C , 1992 .

[46]  H. Kawaji,et al.  Magnetic phase transition of Li0.75CoO2 compared with LiCoO2 and Li0.5CoO2 , 2008 .

[47]  A. Navrotsky,et al.  LiMO2 (M = Mn, Fe, and Co) : Energetics, polymorphism and phase transformation , 2005 .

[48]  C. Delmas,et al.  Synthesis and Investigations on an O4-LiCoO2 Polytype , 2009 .

[49]  Hongsup Lim,et al.  Factors that affect cycle-life and possible degradation mechanisms of a Li-ion cell based on LiCoO2 , 2002 .

[50]  W. D. Johnston,et al.  The preparation, crystallography, and magnetic properties of the LixCo(1−x)O system , 1958 .

[51]  Gerbrand Ceder,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[52]  Christopher M Wolverton,et al.  First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in Li x CoO 2 , 1998 .

[53]  J. Dahn,et al.  Layered LiCoO2 with a Different Oxygen Stacking (O2 Structure) as a Cathode Material for Rechargeable Lithium Batteries , 2000 .

[54]  D. Mohanty,et al.  Thermal decomposition of LixCoO2 monitored by electron energy loss spectroscopy and magnetic susceptibility measurements , 2010 .

[55]  Jenn‐Ming Yang,et al.  Phase Transformation of Nanocrystalline LiCoO2 Cathode After High-Temperature Cycling , 2008 .

[56]  Young-Il Jang,et al.  TEM Study of Electrochemical Cycling‐Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries , 1999 .

[57]  Kazuhisa Shobu,et al.  CaTCalc: New thermodynamic equilibrium calculation software , 2009 .

[58]  T. Araki,et al.  Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles , 2006 .

[59]  Shukuji Asakura,et al.  Solid-state CO{sub 2} sensor with Li{sub 2}CO{sub 3}-Li{sub 3}PO{sub 4}-LiAlO{sub 2} electrolyte and LiCoO{sub 2}-Co{sub 3}O{sub 4} as solid reference electrode , 1997 .

[60]  J. Selman,et al.  Relationship Between Calorimetric and Structural Characteristics of Lithium‐Ion Cells I. Thermal Analysis and Phase Diagram , 2000 .

[61]  M. Onoda,et al.  Stacking faults and metallic properties of triangular lattice CoO2 with a three-layer structure , 2008 .

[62]  Zhonghua Lu,et al.  Staging Phase Transitions in Li x CoO2 , 2002 .

[63]  I. Ansara,et al.  On the Sublattice Formalism Applied to the B2 Phase , 1999, International Journal of Materials Research.

[64]  Stephane Levasseur,et al.  The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study , 1999 .

[65]  Tsutomu Ohzuku,et al.  Solid‐State Redox Reactions of LiCoO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1994 .

[66]  Yo Kobayashi,et al.  Improvement of Degradation at Elevated Temperature and at High State-of-Charge Storage by ZrO2 Coating on LiCoO2 , 2006 .

[67]  C. Delmas,et al.  Evidence for structural defects in non-stoichiometric HT-LiCoO2 : electrochemical, electronic properties and 7Li NMR studies , 2000 .

[68]  C. Delmas,et al.  On “Really” Stoichiometric LiCoO2 , 2008 .

[69]  J. Yamaki,et al.  Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode , 2003 .

[70]  G. Ceder,et al.  Tailoring the Morphology of LiCoO2: A First Principles Study , 2009 .

[71]  Yasuhiko Takahashi,et al.  Single-crystal synthesis, structure refinement and electrical properties of Li0.5CoO2 , 2007 .

[72]  S. Kikkawa,et al.  Electronic phase diagram of the layered cobalt oxide system LixCoO2 (0.0≤x≤1.0) , 2009, 0909.3556.

[73]  K. Onda,et al.  Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries , 2003 .

[74]  A. Semenova,et al.  Semiconductor-metal transition in defect lithium cobaltite , 2006 .

[75]  Anton Van der Ven,et al.  First-Principles Investigation of Phase Stability in the O2-LiCoO2 System , 2003 .

[76]  Sheikh A. Akbar,et al.  Potentiometric CO2 gas sensor with lithium phosphorous oxynitride electrolyte , 2001 .