Stability of the tangent bundle through conifold transitions

Let X be a compact, Kähler, Calabi-Yau threefold and suppose X 7→ X Xt , for t ∈ ∆, is a conifold transition obtained by contracting finitely many disjoint (−1,−1) curves in X and then smoothing the resulting ordinary double point singularities. We show that, for |t| ≪ 1 sufficiently small, the tangent bundle T Xt admits a Hermitian-Yang-Mills metric Ht with respect to the conformally balanced metrics constructed by Fu-Li-Yau. Furthermore, we describe the behavior of Ht near the vanishing cycles of Xt as t → 0.

[1]  Karen K. Uhlenbeck,et al.  On the existence of hermitian‐yang‐mills connections in stable vector bundles , 1986 .

[2]  S. Bando,et al.  STABLE SHEAVES AND EINSTEIN-HERMITIAN METRICS , 1994 .

[3]  M. Michelsohn On the existence of special metrics in complex geometry , 1982 .

[4]  C. Hull Compactifications of the heterotic superstring , 1986 .

[5]  Song Sun,et al.  Algebraic Tangent Cones of Reflexive Sheaves , 2018, International Mathematics Research Notices.

[6]  Yuguang Zhang,et al.  Continuity of Extremal Transitions and Flops for Calabi-Yau Manifolds , 2010, 1012.2940.

[7]  Some Torsional Local Models of Heterotic Strings , 2015, 1508.05566.

[8]  Teng Fei,et al.  A construction of infinitely many solutions to the Strominger system , 2017, Journal of Differential Geometry.

[9]  Interior derivative estimates for the Kähler–Ricci flow , 2011, 1107.1853.

[10]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[13]  Eugenio Calabi,et al.  Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. , 1958 .

[14]  L. Ugarte,et al.  Non-Kaehler heterotic string solutions with non-zero fluxes and non-constant dilaton , 2014, 1402.6107.

[15]  A. Kas,et al.  On the versal deformation of a complex space with an isolated singularity , 1972 .

[16]  P. J. Cohen A SIMPLE PROOF OF THE THEOREM OF , 2007 .

[17]  Ming-Tao Chuan Existence of Hermitian-Yang-Mills metrics under conifold transitions , 2010, 1012.3107.

[18]  G. Tian ON STABILITY OF THE TANGENT BUNDLES OF FANO VARIETIES , 1992 .

[19]  Jianchun Chu,et al.  The Fu–Yau Equation in Higher Dimensions , 2018, Peking Mathematical Journal.

[20]  D. Phong Geometric Partial Differential Equations from Unified String Theories , 2019, 1906.03693.

[21]  Thomas Walpuski,et al.  Hermitian Yang–Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds , 2016, Communications in Partial Differential Equations.

[22]  D. Phong,et al.  Multiplier Ideal Sheaves and the K\"ahler-Ricci Flow , 2006, math/0611794.

[23]  S. Donaldson Anti Self‐Dual Yang‐Mills Connections Over Complex Algebraic Surfaces and Stable Vector Bundles , 1985 .

[24]  On estimates for the Fu–Yau generalization of a Strominger system , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[25]  Xiangwen Zhang,et al.  2 3 M ar 2 01 8 THE ANOMALY FLOW AND THE FU-YAU EQUATION 1 , 2018 .

[26]  Yat-ming Chan Desingularizations of Calabi-Yau 3-folds with conical singularities. II: the obstructed case , 2008 .

[27]  M. Garcia‐Fernandez T-dual solutions of the Hull–Strominger system on non-Kähler threefolds , 2018, Journal für die reine und angewandte Mathematik (Crelles Journal).

[28]  Xiangwen Zhang,et al.  Geometric flows and Strominger systems , 2015, 1508.03315.

[29]  The uniqueness of tangent cones for Yang–Mills connections with isolated singularities , 2002, math/0203077.

[30]  Vacuum configurations for superstrings , 1985 .

[31]  L. Ugarte,et al.  Invariant solutions to the Strominger system and the heterotic equations of motion on solvmanifolds , 2016, 1604.02851.

[32]  Matthew B. Stenzel Ricci-flat metrics on the complexification of a compact rank one symmetric space , 1993 .

[33]  S. Yau,et al.  The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation , 2006, hep-th/0604063.

[34]  Xenia de la Ossa,et al.  Holomorphic bundles and the moduli space of N=1 supersymmetric heterotic compactifications , 2014, Journal of High Energy Physics.

[35]  P. Green,et al.  Connecting moduli spaces of Calabi-Yau threefolds , 1988 .

[36]  Mitchell Faulk Asymptotically conical Calabi-Yau orbifolds, I , 2018 .

[37]  B. Andreas,et al.  Solutions of the Strominger System via Stable Bundles on Calabi-Yau Threefolds , 2010, 1008.1018.

[38]  Xiangwen Zhang,et al.  Anomaly flows. , 2016, 1610.02739.

[39]  Jian Song On a Conjecture of Candelas and de la Ossa , 2012, 1201.4358.

[40]  Xiangwen Zhang,et al.  The Fu–Yau equation with negative slope parameter , 2016, Inventiones mathematicae.

[41]  Green,et al.  Possible phase transitions among Calabi-Yau compactifications. , 1988, Physical review letters.

[42]  L. Ugarte,et al.  Non-Kaehler Heterotic String Compactifications with Non-Zero Fluxes and Constant Dilaton , 2008, 0804.1648.

[43]  S. Yau,et al.  Hermitian-Yang-Mills Connection on Non-Kähler Manifolds , 1987 .

[44]  Thomas Walpuski,et al.  Tangent cones of Hermitian Yang-Mills connections with isolated singularities , 2016, 1610.08283.

[45]  Song Sun,et al.  Singularities of Hermitian–Yang–Mills connections and Harder–Narasimhan–Seshadri filtrations , 2017, 1707.08314.

[46]  Invariant Solutions to the Strominger System on Complex Lie Groups and Their Quotients , 2014, 1407.7641.

[47]  Valentino Tosatti Limits of Calabi–Yau metrics when the Kähler class degenerates , 2007, 0710.4579.

[48]  S. Yau Smoothing 3-folds with trivial canonical bundle and ordinary double points , 1998 .

[49]  Xiangwen Zhang,et al.  A flow of conformally balanced metrics with Kähler fixed points , 2018, Mathematische Annalen.

[50]  Xiangwen Zhang,et al.  Estimates for a geometric flow for the Type IIB string , 2020, Mathematische Annalen.

[51]  M. Garcia‐Fernandez Lectures on the Strominger system , 2016, 1609.02615.

[52]  Valentino Tosatti Adiabatic limits of Ricci-flat Kähler metrics , 2009, 0905.4718.

[53]  S. Yau Splitting theorem and an algebraic geometric characterization of locally Hermitian symmetric spaces , 1993 .

[54]  Y. Siu Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics: Delivered At The German Mathematical Society Seminar In Düsseldorf In June, 1986 , 1987 .

[55]  Teng Fei A construction of non-Kähler Calabi–Yau manifolds and new solutions to the Strominger system , 2015, 1507.00293.

[56]  S. Yau,et al.  Local Heterotic Torsional Models , 2008, 0806.2392.

[57]  A. Strominger Superstrings with Torsion , 1986 .

[58]  B. Andreas,et al.  Heterotic non-Kähler geometries via polystable bundles on Calabi–Yau threefolds , 2010, 1011.6246.

[59]  H. Grauert Über Modifikationen und exzeptionelle analytische Mengen , 1962 .

[60]  Cristiano Spotti,et al.  Deformations of nodal Kähler–Einstein Del Pezzo surfaces with discrete automorphism groups , 2012, J. Lond. Math. Soc..

[61]  Spiro Karigiannis Desingularization of G2 manifolds with isolated conical singularities , 2008, 0807.3346.

[62]  M. Reid The moduli space of 3-folds withK=0 may nevertheless be irreducible , 1987 .

[63]  R. Friedman Simultaneous resolution of threefold double points , 1986 .

[64]  Li Jun THE EXISTENCE OF SUPERSYMMETRIC STRING THEORY WITH TORSION , 2004 .