Energy and the Environment

Abstract This chapter summarizes the fundamentals of the main technologies implemented for power production worldwide, by also analyzing their overall environmental impact. A holistic approach on presenting the basics, benefits, and drawbacks of each technology has been attempted, aiming to the current trends on policies for emissions mitigation and R&D advances in clean energy systems. The reader is also introduced to research tools for process engineering and Life Cycle Analysis, basically referring to solid fuel systems design and optimization. Overall, fossil fuel, renewable, hydrogen, and nuclear energy systems are presented through the lenses of their quantified societal, economic, and environmental implications, as well as the future prospects for their implementation.

[1]  Lion Hirth The Market Value of Variable Renewables The Effect of Solar and Wind Power Variability on their Relative Price , 2013 .

[2]  S. Grigoriev,et al.  Pure hydrogen production by PEM electrolysis for hydrogen energy , 2006 .

[3]  Ming Cheng,et al.  The state of the art of wind energy conversion systems and technologies: A review , 2014 .

[4]  Wan Ramli Wan Daud,et al.  An overview of fuel management in direct methanol fuel cells , 2013 .

[5]  J. Château,et al.  National and Sectoral GHG Mitigation Potential: A Comparison Across Models , 2009 .

[6]  Freyr Sverrisson,et al.  Renewables 2014 : global status report , 2014 .

[7]  E. M. Harper,et al.  The criticality of four nuclear energy metals , 2015 .

[8]  D. O. Hall,et al.  Cooling the greenhouse with bioenergy , 1991, Nature.

[9]  N. Nikolopoulos,et al.  Parametric investigation of a renewable alternative for utilities adopting the co-firing lignite/biomass concept , 2013 .

[10]  Ayhan Demirbas,et al.  Biofuels sources, biofuel policy, biofuel economy and global biofuel projections , 2008 .

[11]  P. Takahashi,et al.  Biophotolysis-based Hydrogen Production by Cyanobacteria and Green Microalgae , 2007 .

[12]  M. Junker,et al.  State of the art of biological hydrogen production processes , 2006 .

[13]  Martin Pehnt,et al.  Environmental impacts of distributed energy systems—The case of micro cogeneration , 2008 .

[14]  R. Turner,et al.  Economics of Natural Resources and the Environment , 1989 .

[15]  M. Asadullah Biomass gasification gas cleaning for downstream applications: A comparative critical review , 2014 .

[16]  Yanling He,et al.  High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose , 2007 .

[17]  Edgar G. Hertwich,et al.  Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs , 2012 .

[18]  B. Kelleher,et al.  Review of literature on catalysts for biomass gasification , 2001 .

[19]  J. Koppejan,et al.  The Handbook of Biomass Combustion and Co-firing , 2008 .

[20]  A. C. Cilliers Benchmarking an expert fault detection and diagnostic system on the Three Mile Island accident event sequence , 2013 .

[21]  D. A. Clugston,et al.  Crystalline silicon on glass (CSG) thin-film solar cell modules , 2004 .

[22]  H. Susskind,et al.  COMBINED HYDROELECTRIC PUMPED STORAGE AND NUCLEAR POWER GENERATION. , 1970 .

[23]  N. Panwar,et al.  Role of renewable energy sources in environmental protection: A review , 2011 .

[24]  W El-Osta,et al.  Hydrogen as a fuel for the transportation sector: possibilities and views for future applications in Libya , 2000 .

[25]  E. Karampinis,et al.  New power production options for biomass and cogeneration , 2015 .

[26]  S. Badwal,et al.  A comprehensive review of direct carbon fuel cell technology. , 2012 .

[27]  Paul Friley,et al.  A hydrogen economy: opportunities and challenges , 2005 .

[28]  S. Yolcular,et al.  Hydrogen Production for Energy Use in European Union Countries and Turkey , 2009 .

[29]  Dong-Choon Lee,et al.  A Fault Ride-Through Technique of DFIG Wind Turbine Systems Using Dynamic Voltage Restorers , 2011, IEEE Transactions on Energy Conversion.

[30]  Marc A. Rosen,et al.  Advances in hydrogen production by thermochemical water decomposition: A review , 2010 .

[31]  Aie,et al.  World Energy Outlook 2013 , 2013 .

[32]  D. Leung,et al.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) , 2008 .

[33]  M. I. Ojovan,et al.  Handbook of advanced radioactive waste conditioning technologies , 2011 .

[34]  O. Edenhofer,et al.  Renewable Energy Sources and Climate Change Mitigation , 2011 .

[35]  A. Steinfeld Solar thermochemical production of hydrogen--a review , 2005 .

[36]  Zhe Chen,et al.  Overview of different wind generator systems and their comparisons , 2008 .

[37]  Debabrata Das,et al.  Hydrogen production by biological processes: a survey of literature , 2001 .

[38]  John R. Benemann,et al.  Biological hydrogen production , 1995 .

[39]  V. Papazoglou,et al.  On the investigation of 7075 aluminum alloy welding using concentrated solar energy , 2005 .

[40]  Panagiotis Grammelis,et al.  Calcium looping process simulation based on an advanced thermodynamic model combined with CFD analysis , 2015 .

[41]  S Wing,et al.  A reevaluation of cancer incidence near the Three Mile Island nuclear plant: the collision of evidence and assumptions. , 1997, Environmental health perspectives.

[42]  K. Sumathy,et al.  AN OVERVIEW OF HYDROGEN PRODUCTION FROM BIOMASS , 2006 .

[43]  Stefanie Hellweg,et al.  Wind Power Electricity: The Bigger the Turbine, The Greener the Electricity? , 2012, Environmental science & technology.

[44]  John V. Farr,et al.  Systems Life Cycle Costing: Economic Analysis, Estimation, and Management , 2011 .

[45]  Tomasz Wiltowski,et al.  Catalyst development for thermocatalytic decomposition of methane to hydrogen , 2008 .

[46]  M. Balat,et al.  Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems , 2009 .

[47]  Michael Q. Wang,et al.  Correction to Life-Cycle Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum , 2012 .

[48]  K. Shrader-Frechette Fukushima, Flawed Epistemology, and Black-Swan Events , 2011 .

[49]  J. E. Funk,et al.  Energy Requirements in Production of Hydrogen from Water , 1966 .

[50]  H. Hampel,et al.  Supply of uranium , 1973 .

[51]  O. Kovalchuk,et al.  Molecular Aspects of Plant Adaptation to Life in the Chernobyl Zone1[w] , 2004, Plant Physiology.

[52]  S. C. Kaushik,et al.  State-of-the-art of solar thermal power plants—A review , 2013 .

[53]  J. J. Burkhardt,et al.  Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation , 2012 .

[54]  M. Balat,et al.  Hydrogen in Fueled Systems and the Significance of Hydrogen in Vehicular Transportation , 2007 .

[55]  S. P Sukhatme,et al.  Solar Energy: Principles of Thermal Collection and Storage , 2009 .

[56]  Panagiotis Grammelis,et al.  Co‐firing of biomass with coal in thermal power plants: technology schemes, impacts, and future perspectives , 2014 .

[57]  Gerrit Brem,et al.  Review of Catalysts for Tar Elimination in Biomass Gasification Processes , 2004 .

[58]  D. Massé,et al.  Psychrophilic anaerobic digestion of lignocellulosic biomass: a characterization study. , 2013, Bioresource technology.

[59]  G. Heath,et al.  Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation , 2012 .

[60]  Frede Blaabjerg,et al.  Adjustable Speed Drives in the Next Decade: Future Steps in Industry and Academia , 2004 .

[61]  C. Athanassiou,et al.  Hydrogen production in solid electrolyte membrane reactors (SEMRs) , 2007 .

[62]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[63]  M Susser,et al.  Cancer near the Three Mile Island nuclear plant: radiation emissions. , 1990, American journal of epidemiology.

[64]  Takeo Ohnishi,et al.  The Disaster at Japan's Fukushima-Daiichi Nuclear Power Plant after the March 11, 2011 Earthquake and Tsunami, and the Resulting Spread of Radioisotope Contamination1 , 2012, Radiation research.

[65]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[66]  Panagiotis Grammelis,et al.  Modeling of Wheat Straw Torrefaction as a Preliminary Tool for Process Design , 2013 .

[67]  D. Stevenson,et al.  Global environmental impacts of the hydrogen economy , 2006 .

[68]  S. Jensen,et al.  Highly efficient high temperature electrolysis , 2008 .

[69]  Siegfried Heier,et al.  Grid Integration of Wind Energy Conversion Systems , 1998 .

[70]  Ayhan Demirbas,et al.  Global Renewable Energy Resources , 2006 .

[71]  Pekka Simell,et al.  Catalytic purification of tarry fuel gas , 1990 .

[72]  A K Jönbrink LCA software survey , 2000 .

[73]  Yongkang Su,et al.  Simulation and prediction on the performance of a vehicle's hydrogen engine , 2003 .

[74]  Jianli Hu,et al.  An overview of hydrogen production technologies , 2009 .

[75]  Q. Ma,et al.  A high-performance ammonia-fueled solid oxide fuel cell , 2006 .

[76]  Jenny M. Jones,et al.  Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties , 2008 .

[77]  I. Yuksel Hydropower in Turkey for a clean and sustainable energy future , 2008 .

[78]  J. Sjöblom,et al.  Biofuels–Renewable Energy Sources: A Review , 2010 .

[79]  J. Ganley An intermediate-temperature direct ammonia fuel cell with a molten alkaline hydroxide electrolyte , 2008 .

[80]  Muhammad Arshad,et al.  The anaerobic digestion of solid organic waste. , 2011, Waste management.

[81]  Sayan Das,et al.  State of Art of Solar Photovoltaic Technology , 2013 .

[82]  Trevor Pryor,et al.  Field and laboratory studies of the stability of amorphous silicon solar cells and modules , 1999 .

[83]  G. V. D. Horst,et al.  Fuelwood: The other renewable energy source for Africa? , 2009 .

[84]  Patrick C. Hallenbeck,et al.  Biological hydrogen production; fundamentals and limiting processes , 2002 .

[85]  E. Hertwich,et al.  Environmental implications of large-scale adoption of wind power: a scenario-based life cycle assessment , 2011 .

[86]  Vladimir M. Aroutiounian,et al.  Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting , 2005 .

[87]  Jungho Baek,et al.  A panel cointegration analysis of CO2 emissions, nuclear energy and income in major nuclear generating countries , 2015 .

[88]  Ralph E.H. Sims,et al.  Bioenergy to mitigate for climate change and meet the needs of society, the economy and the environment , 2003 .

[89]  Ruxu Du,et al.  An investigation of the solar powered absorption refrigeration system with advanced energy storage technology , 2011 .

[90]  S. Alam,et al.  Framework Convention on Climate Change , 1993 .

[91]  H. Herzog,et al.  Scaling up carbon dioxide capture and storage: From megatons to gigatons , 2011 .

[92]  Debabrata Das,et al.  Improvement of fermentative hydrogen production: various approaches , 2004, Applied Microbiology and Biotechnology.

[93]  Frano Barbir,et al.  Economics of hydrogen as a fuel for surface transportation , 1990 .

[94]  Zhe Chen,et al.  A Review of the State of the Art of Power Electronics for Wind Turbines , 2009, IEEE Transactions on Power Electronics.

[95]  Panagiotis Grammelis,et al.  Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace , 2012 .

[96]  Panagiotis Grammelis,et al.  High-resolution 3-D full-loop simulation of a CFB carbonator cold model , 2013 .

[97]  P. Selvaraj,et al.  High efficiency CSS CdTe solar cells , 2000 .

[98]  A. Demirbas,et al.  Hydrogen-rich Gases from Biomass via Pyrolysis and Air-steam Gasification , 2009 .

[99]  Lion Hirth The Market Value of Variable Renewables , 2012 .

[100]  N. Scarlat,et al.  The role of biomass and bioenergy in a future bioeconomy: Policies and facts , 2015 .

[101]  Debabrata Das,et al.  RECENT DEVELOPMENTS IN BIOLOGICAL HYDROGEN PRODUCTION PROCESSES , 2008 .

[102]  James Saling,et al.  Radioactive Waste Management , 1990 .

[103]  Edward S. Rubin,et al.  An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage , 2008 .

[104]  Mark Z. Jacobson,et al.  Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials , 2011 .

[105]  J. Ogden Developing an infrastructure for hydrogen vehicles: a Southern California case study , 1999 .

[106]  Bent Sørensen,et al.  Hydrogen and Fuel Cells: Emerging Technologies and Applications , 2011 .

[107]  Liejin Guo,et al.  Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water , 2006 .

[108]  Majid Saffar-Avval,et al.  Efficient design of feedwater heaters network in steam power plants using pinch technology and exergy analysis , 2008 .

[109]  Umberto Lucia,et al.  Overview on fuel cells , 2014 .

[110]  Miko Elwenspoek,et al.  The electrolysis of water: an actuation principle for MEMS with a big opportunity , 1998 .

[111]  Aki Mikkola,et al.  Direct-drive permanent magnet generators for high-power wind turbines: benefits and limiting factors , 2012 .

[112]  Hyung Chul Kim,et al.  Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation , 2012 .

[113]  B. Dale,et al.  Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel , 2005 .

[114]  Randy S. Lewis,et al.  Fermentation of biomass‐generated producer gas to ethanol , 2004, Biotechnology and bioengineering.

[115]  Raymond LeRoy Murray Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes , 1975 .

[116]  M. Balat Potential importance of hydrogen as a future solution to environmental and transportation problems , 2008 .

[117]  M. Riazi Characterization and Properties of Petroleum Fractions , 2005 .

[118]  J. Holm‐Nielsen,et al.  The future of anaerobic digestion and biogas utilization. , 2009, Bioresource technology.

[119]  Gui-jun Wang,et al.  Pretreatment of biomass by torrefaction , 2011 .

[120]  Thomas Bruckner,et al.  Mitigation potential and costs , 2011 .

[121]  F. Kargı,et al.  Bio-hydrogen production from waste materials , 2006 .

[122]  Cédric Philibert,et al.  THE PRESENT AND FUTURE USE OF SOLAR THERMAL ENERGY AS A PRIMARY SOURCE OF ENERGY , 2005 .

[123]  George E. Marnellos,et al.  Integration of Hydrogen Energy Technologies in Autonomous Power Systems , 2008 .

[124]  Nurulkamal Masseran,et al.  Markov Chain model for the stochastic behaviors of wind-direction data , 2015 .

[125]  V. K. Srivastava,et al.  Studies on pyrolysis of a single biomass cylindrical pellet—kinetic and heat transfer effects , 1999 .

[126]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[127]  P. Basu Combustion and gasification in fluidized beds , 2006 .

[128]  I. Youm,et al.  Renewable energy activities in Senegal: a review , 2000 .

[129]  Torsten Fransson,et al.  Small-scale biomass CHP plants in Sweden and Finland , 2011 .