Cross t-Intersecting Integer Sequences from Weighted Erdős-Ko-Rado

Let m,n and t be positive integers. Consider [m] as the set of sequences of length n on anm-letter alphabet. We say that two subsets A ⊂ [m] and B ⊂ [m] cross t-intersect if any two sequences a ∈ A and b ∈ B match in at least t positions. In this case it is shown that if m > (1− 1 t 2 ) −1 then |A||B| ≤ (mn−t)2. We derive this result from a weighted version of the Erdős–Ko–Rado theorem concerning cross t-intersecting families of subsets, and we also include the corresponding stability statement. One of our main tools is the eigenvalue method for intersection matrices due to Friedgut [10]. (2010 AMS subject classification codes 05D05, 05C50.)

[1]  D. Kleitman On a combinatorial conjecture of Erdös , 1966 .

[2]  Christian Bey,et al.  Old and New Results for the Weighted t-Intersection Problem via AK-Methods , 2000 .

[3]  R. Ahlswede,et al.  The diametric theorem in Hamming spaces-optimal anticodes , 1997, Proceedings of IEEE International Symposium on Information Theory.

[4]  Zoltán Füredi,et al.  The Erdös-Ko-Rado Theorem for Integer Sequences , 1980, SIAM J. Matrix Anal. Appl..

[5]  Richard M. Wilson,et al.  The exact bound in the Erdös-Ko-Rado theorem , 1984, Comb..

[6]  András Sárközy,et al.  Numbers, information and complexity , 2000 .

[7]  Haran Pilpel,et al.  Intersecting Families of Permutations , 2010, 1011.3342.

[8]  NORIHIDE TOKUSHIGE Intersecting Families — Uniform versus Weighted , 2011 .

[9]  Norihide Tokushige,et al.  The exact bound in the Erdös-Ko-Rado theorem for cross-intersecting families , 1989, J. Comb. Theory, Ser. A.

[10]  Sangjune Lee,et al.  An Erdős-Ko-Rado theorem for cross t-intersecting families , 2014, J. Comb. Theory, Ser. A.

[11]  Norihide Tokushige,et al.  The Erdős–Ko–Rado Theorem for Integer Sequences , 1999, Comb..

[12]  D. Kleitman Families of Non-disjoint subsets* , 1966 .

[13]  Peter Frankl,et al.  The Erdös-Ko-Rado theorem for vector spaces , 1986, J. Comb. Theory, Ser. A.

[14]  Norihide Tokushige,et al.  The eigenvalue method for cross t-intersecting families , 2013 .

[15]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[16]  Ehud Friedgut,et al.  On the measure of intersecting families, uniqueness and stability , 2008, Comb..

[17]  M. Gromov Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .

[18]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .