Exact computation and large angular momentum asymptotics of 3nj symbols: Semiclassical disentangling of spin networks.

Spin networks, namely, the 3nj symbols of quantum angular momentum theory and their generalizations to groups other than SU(2) and to quantum groups, permeate many areas of pure and applied science. The issues of their computation and characterization for large values of their entries are a challenge for diverse fields, such as spectroscopy and quantum chemistry, molecular and condensed matter physics, quantum computing, and the geometry of space time. Here we record progress both in their efficient calculation and in the study of the large j asymptotics. For the 9j symbol, a prototypical entangled network, we present and extensively check numerically formulas that illustrate the passage to the semiclassical limit, manifesting both the occurrence of disentangling and the discrete-continuum transition.

[1]  Klaus Schulten,et al.  Exact recursive evaluation of 3j- and 6j-coefficients for quantum- mechanical coupling of angular momenta , 1975 .

[2]  Willard Miller,et al.  Symmetry and Separation of Variables , 1977 .

[3]  Gediminas Gaigalas,et al.  Maple procedures for the coupling of angular momenta. VIII. Spin-angular coefficients for single-shell configurations , 2005, Comput. Phys. Commun..

[4]  Tullio Regge,et al.  Discrete structures in gravity , 2000 .

[5]  Shan-Tao Lai,et al.  CALCULATION OF 3N-J SYMBOLS BY LABARTHE'S METHOD , 1997 .

[6]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[7]  V. Aquilanti,et al.  Hyperquantization algorithm. I. Theory for triatomic systems , 1998 .

[8]  Fizikos ir matematikos institutas,et al.  Mathematical apparatus of the theory of angular momentum , 1962 .

[9]  S. Fritzsche,et al.  Maple procedures for the coupling of angular momenta. VII. Extended and accelerated computations , 2003 .

[10]  Vincenzo Aquilanti,et al.  Angular and hyperangular momentum recoupling, harmonic superposition and Racah polynomials: a recursive algorithm , 2001 .

[11]  C. Sandorfy The role of Rydberg states in spectroscopy and photochemistry : low and high Rydberg states , 1999 .

[12]  C. Kiefer Quantum Gravity , 2004 .

[13]  V. Aquilanti,et al.  Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity , 2008 .

[14]  G. Gaigalas,et al.  Maple procedures for the coupling of angular momenta. VI. LS–jj transformations☆ , 2002 .

[15]  J. Labarthe Generating functions for the coupling-recoupling coefficients of SU(2) , 1975 .

[16]  T. Inghoff,et al.  Maple procedures for the coupling of angular momenta. V. Recoupling coefficients ? ? This program ca , 2001 .

[17]  Liqiang Wei Corrigendum: Universal factorization of 3n − j(j > 2) symbols of the first and second kinds for SU(2) group and their direct and exact calculation and tabulation , 2003, math-ph/0306040.

[18]  K. Kay,et al.  Global uniform semiclassical approximation for Clebsch-Gordan coefficients. , 2008, The Journal of chemical physics.

[19]  A study of the helium 31D→21P→11S cascade with algebraic computing , 1993 .

[20]  Klaus Schulten,et al.  Recursive evaluation of 3j and 6j coefficients , 1984 .

[21]  J. Avery,et al.  Generalized Sturmians and atomic spectra , 2006 .

[22]  A Macsyma program for computing analytic Clebsch–Gordan coefficients of U(3)⊃SO(3) , 2001 .

[23]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[24]  Vincenzo Aquilanti,et al.  The discrete representation correspondence between quantum and classical spatial distributions of angular momentum vectors. , 2006, The Journal of chemical physics.

[25]  A. Deveikis,et al.  The analytical Scheme calculator for angular momentum coupling and recoupling coefficients , 2005, Comput. Phys. Commun..

[26]  Klaus Schulten,et al.  Semiclassical approximations to 3j- and 6j-coefficients for quantum­ mechanical coupling of angular momenta An inverse problem in statistical mechanics Direct determination of the Iwasawa decomposition for noncompact , 1975 .

[27]  V. Aquilanti,et al.  Sturmian approach to one-electron many-center systems: integrals and iteration schemes , 2002 .

[28]  R. Courant,et al.  Methoden der Mathematischen Physik: Erster Band , 1931 .

[29]  Donald E. Neville,et al.  A Technique for Solving Recurrence Relations Approximately and Its Application to the 3‐J and 6‐J Symbols , 1971 .

[30]  Vincenzo Aquilanti,et al.  3nj-symbols and harmonic superposition coefficients: an icosahedral abacus , 2001 .

[31]  R. Courant,et al.  Methoden der mathematischen Physik , .

[32]  Roger Penrose,et al.  A complete guide to the laws of the universe , 2005 .

[33]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[34]  Unified approach for exact calculation of angular momentum coupling and recoupling coefficients , 1999 .

[35]  Igal Talmi,et al.  Spectroscopic and Group Theoretical Methods in Physics , 1970 .