Plasma-controlled nanocrystallinity and phase composition of TiO2: a smart way to enhance biomimetic response.

This contribution sheds light on the role of crystal size and phase composition in inducing biomimetic apatite growth on the surface of nanostructured titania films synthesized by reactive magnetron sputtering of Ti targets in Ar+O(2) plasmas. Unlike most existing techniques, this method enables one to deposit highly crystalline titania films with a wide range of phase composition and nanocrystal size, without any substrate heating or postannealing. Moreover, by using this dry plasma-based method one can avoid surface hydroxylation at the deposition stage, almost inevitable in wet chemical processes. Results of this work show that high phase purity and optimum crystal size appear to be the essential requirement for efficient apatite formation on magnetron plasma-fabricated bioactive titania coatings.

[1]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[2]  Tadashi Kokubo,et al.  Structural dependence of apatite formation on titania gels in a simulated body fluid. , 2003, Journal of biomedical materials research. Part A.

[3]  Takashi Nakamura,et al.  Apatite-forming ability of CaO-containing titania. , 2002, Biomaterials.

[4]  C. Heo,et al.  Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics , 2005 .

[5]  T. Peltola,et al.  Effect of aging time of sol on structure and in vitro calcium phosphate formation of sol-gel-derived titania films. , 2000, Journal of biomedical materials research.

[6]  X. D. Zhang,et al.  Characterization of surface oxide films on titanium and bioactivity , 2002, Journal of materials science. Materials in medicine.

[7]  Doh-Yeon Kim,et al.  Charged clusters in thin film growth , 2004 .

[8]  Jin-Ming Wu,et al.  Low‐Temperature Preparation of Anatase and Rutile Layers on Titanium Substrates and Their Ability To Induce in Vitro Apatite Deposition , 2004 .

[9]  Mark C. Barnes,et al.  The mechanism of low temperature deposition of crystalline anatase by reactive DC magnetron sputtering , 2005 .

[10]  Pere Roca i Cabarrocas,et al.  Polymorphous silicon thin films produced in dusty plasmas: application to solar cells , 2004 .

[11]  P. Chu,et al.  Plasma-treated nanostructured TiO(2) surface supporting biomimetic growth of apatite. , 2005, Biomaterials.

[12]  S. Hayakawa,et al.  Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. , 2003, Biomaterials.

[13]  W. Kiefer,et al.  Vibrational spectroscopic study of tetracalcium phosphate in pure polycrystalline form and as a constituent of a self-setting bone cement. , 1998, Journal of biomedical materials research.

[14]  Masakazu Kawashita,et al.  Novel bioactive materials with different mechanical properties. , 2003, Biomaterials.

[15]  G. Steiner,et al.  Solution deposition of hydroxyapatite on titanium pretreated with a sodium ion implantation. , 2002, Journal of biomedical materials research.

[16]  巌偉琪 Bonding of chemically treated titanium implants to bone(化学的に処理されたチタンインプラトの骨との結合) , 1997 .

[17]  T. Peltola,et al.  Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. , 1998, Journal of biomedical materials research.

[18]  T. Peltola,et al.  Effect of Albumin and Fibrinogen on Calcium Phosphate Formation on Sol−Gel-Derived Titania Coatings in Vitro , 2002 .

[19]  Cheong Hoong Diong,et al.  RF plasma sputtering deposition of hydroxyapatite bioceramics : synthesis, performance, and biocompatibility , 2005 .

[20]  R. Bartnikas,et al.  Corona measurement and interpretation , 1979 .

[21]  Andrea R. Gerson,et al.  The mechanism of TiO2 deposition by direct current magnetron reactive sputtering , 2004 .

[22]  Federico Rosei,et al.  Nanostructured surfaces: challenges and frontiers in nanotechnology , 2004 .

[23]  P. Zeman,et al.  Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate , 2002 .

[24]  K Nakanishi,et al.  The role of hydrated silica, titania, and alumina in inducing apatite on implants. , 1994, Journal of biomedical materials research.

[25]  S. Hayakawa,et al.  Improvement of bioactivity of H(2)O(2)/TaCl(5)-treated titanium after subsequent heat treatments. , 2000, Journal of biomedical materials research.

[26]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[27]  S. F. Devyatova,et al.  Si–TiO2 interface evolution at prolonged annealing in low vacuum or N2O ambient , 2000 .

[28]  C. Sanchez,et al.  Quantum size effect in TiO2 nanoparticles: does it exist? , 2000 .

[29]  T. Peltola,et al.  TF-XRD examination of surface-reactive TiO2 coatings produced by heat treatment and CO2 laser treatment. , 2005, Biomaterials.

[30]  Xuanyong Liu,et al.  Bioactivity of plasma sprayed dicalcium silicate coatings. , 2002, Biomaterials.

[31]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of Biomedical Materials Research.

[32]  Xiaochen Wu,et al.  The effect of surface roughness and wettability of nanostructured TiO2 film on TCA-8113 epithelial-like cells , 2006 .

[33]  Seong-Hyeon Hong,et al.  Biomimetic apatite coatings on micro-arc oxidized titania. , 2004, Biomaterials.

[34]  I. Kangasniemi,et al.  Bonelike Hydroxyapatite Induction by a Gel‐Derived Titania on a Titanium Substrate , 1994 .

[35]  R. Rohanizadeh,et al.  Preparation of different forms of titanium oxide on titanium surface: effects on apatite deposition. , 2004, Journal of biomedical materials research. Part A.

[36]  Marcus Textor,et al.  Titanium in Medicine : material science, surface science, engineering, biological responses and medical applications , 2001 .

[37]  Mika Jokinen,et al.  Use of sol-gel-derived titania coating for direct soft tissue attachment. , 2004, Journal of biomedical materials research. Part A.

[38]  K. Okimura,et al.  Characteristics of rutile TiO2 films prepared by r.f. magnetron sputtering at a low temperature , 1996 .