Preparation of dithienylphospholes by 1,1-carboboration.

In this study the scope of the 1,1-carboboration reaction was extended to the preparation of mixed heterole-based conjugated π-systems. Two arylbis(alkynyl)phosphane starting materials 2 were synthesized bearing two thiophene isomers at the alkyne units and the bulky tipp-substituent (tipp=2,4,6-triisopropylphenyl) at the phosphorous atom. The bis(thienylethynyl)phosphanes 2 were converted into the corresponding 2,5-thienyl-substituted 3-borylphospholes 4 in a double 1,1-carboboration reaction sequence employing the strongly electrophilic B(C6 F5 )3 reagent under mild reaction conditions. Subsequent Suzuki-Miyaura type cross-coupling yielded the corresponding 3-phenylphospholes 7 in a one-pot procedure from phosphanes 2 in high yields. Phospholes 7 were converted into the respective phosphole oxides 8. A photophysical characterization of derivatives 7 and 8 was carried out. The results presented here demonstrate the suitability of the 1,1-carboboration reaction for the preparation of phosphole-/thiophene-based, light-emitting systems.

[1]  G. Erker,et al.  Borole formation by 1,1-carboboration. , 2014, Journal of the American Chemical Society.

[2]  N. Chatani,et al.  Palladium-catalyzed direct synthesis of phosphole derivatives from triarylphosphines through cleavage of carbon-hydrogen and carbon-phosphorus bonds. , 2013, Angewandte Chemie.

[3]  Di Li,et al.  Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs). , 2013, Chemical Society reviews.

[4]  G. Erker,et al.  Unusual pathway taken in the reaction of bis(alkynyl)diisopropylaminoboranes with B(C6F5)3. , 2013, Chemistry, an Asian journal.

[5]  X. L. Le Goff,et al.  Reactivity differences between 2,4- and 2,5-disubstituted zirconacyclopentadienes: a highly selective and general approach to 2,4-disubstituted phospholes. , 2013, Dalton transactions.

[6]  G. Erker,et al.  Dibenzopentalenes from B(C6F5)3-induced cyclization reactions of 1,2-bis(phenylethynyl)benzenes. , 2013, Angewandte Chemie.

[7]  H. Lang,et al.  Synthesis and (Spectro)electrochemical Behavior of 2,5-Diferrocenyl-1- phenyl-1 H-phosphole , 2013 .

[8]  Arumugam Jayaraman,et al.  Facile Phosphorus–Carbon Bond Formation using a Tungsten-Coordinated Phosphirenyl Cation , 2013 .

[9]  Y. Matano,et al.  Synthesis and structure-property relationships of 2,2'-bis(benzo[b]phosphole) and 2,2'-benzo[b]phosphole-benzo[b]heterole hybrid π systems. , 2012, Chemistry.

[10]  David A. Hanifi,et al.  Synthesis and properties of bisphosphole-bridged ladder oligophenylenes. , 2012, Chemistry, an Asian journal.

[11]  R. Fröhlich,et al.  Alkenylborane-Derived Frustrated Lewis Pairs: Metal-Free Catalytic Hydrogenation Reactions of Electron-Deficient Alkenes , 2012 .

[12]  T. Baumgartner,et al.  Combining form with function--the dawn of phosphole-based functional materials. , 2012, Dalton transactions.

[13]  T. Baumgartner,et al.  Synthesis and unexpected halochromism of carbazole-functionalized dithienophospholes , 2012 .

[14]  G. Erker,et al.  Preparation of Dihydroborole Derivatives by a Simple 1,1-Carboboration Route , 2012 .

[15]  R. Fröhlich,et al.  1,1-Carboboration route to substituted naphthalenes. , 2012, Organic letters.

[16]  R. Fröhlich,et al.  Die 1,1‐Carboborierung von Bis(alkinyl)phosphanen als Zugang zum Phospholgerüst , 2012 .

[17]  G. Erker,et al.  The 1,1-carboboration of bis(alkynyl)phosphanes as a route to phosphole compounds. , 2012, Angewandte Chemie.

[18]  G. Erker,et al.  1,1-Carboboration. , 2012, Chemical communications.

[19]  R. Fröhlich,et al.  Frustrated Lewis Pair Reactions With Bis-Acetylenic Substrates: Exploring the Narrow Gap Separating Very Different Competing Reaction Pathways , 2011 .

[20]  G. Erker,et al.  Phosphirenium-borate zwitterion: formation in the 1,1-carboboration reaction of phosphinylalkynes. , 2011, Chemical communications.

[21]  Yasuaki Tokudome,et al.  Fusion of phosphole and 1,1'-biacenaphthene: phosphorus(V)-containing extended π-systems with high electron affinity and electron mobility. , 2011, Angewandte Chemie.

[22]  K. Lammertsma,et al.  Ladder-type P,S-bridged trans-stilbenes. , 2011, Inorganic chemistry.

[23]  R. Fröhlich,et al.  Reaktionen frustrierter Lewis‐Paare mit konjugierten Inonen – selektive Hydrierung der Kohlenstoff‐Kohlenstoff‐Dreifachbindung , 2011 .

[24]  R. Fröhlich,et al.  Reaction of frustrated Lewis pairs with conjugated ynones-selective hydrogenation of the carbon-carbon triple bond. , 2011, Angewandte Chemie.

[25]  R. Fröhlich,et al.  Reactions of bis(alkynyl)silanes with HB(C6F5)2: Formation of boryl-substituted silacyclobutene derivatives , 2011 .

[26]  T. Baumgartner,et al.  Band-Gap Engineering of Polythiophenes via Dithienophosphole Doping , 2011 .

[27]  T. Baumgartner,et al.  Dually switchable heterotetracenes: addressing the photophysical properties and self-organization of the P-S system. , 2011, Journal of the American Chemical Society.

[28]  Y. Matano,et al.  Effects of heterole spacers on the structural, optical, and electrochemical properties of 2,5-bis(1,5-diphenylphosphol-2-yl)heteroles† , 2011 .

[29]  S. Yamaguchi,et al.  Intense fluorescence of 1-aryl-2,3,4,5-tetraphenylphosphole oxides in the crystalline state , 2010 .

[30]  M. Hissler,et al.  Phosphole-based π-conjugated electroluminescent materials for OLEDs , 2010 .

[31]  R. McDonald,et al.  Divergent Reactivity of Perfluoropentaphenylborole with Alkynes , 2010 .

[32]  R. Fröhlich,et al.  Remarkably variable reaction modes of frustrated Lewis pairs with non-conjugated terminal diacetylenes. , 2010, Chemical communications.

[33]  B. Wrackmeyer,et al.  Fused Silacarbacycles Containing a Silole Unit: 1,2‐Hydroboration and 1,1‐Organoboration of Alkynyl(vinyl)silanes , 2010 .

[34]  O. Blacque,et al.  Activation of Terminal Alkynes by Frustrated Lewis Pairs , 2010 .

[35]  S. Yamaguchi,et al.  Benzo[b]phosphole-containing pi-electron systems: synthesis based on an intramolecular trans-halophosphanylation and some insights into their properties. , 2009, Chemistry, an Asian journal.

[36]  B. Wrackmeyer,et al.  Synthesis and Molecular Structure of Silole Derivatives Bearing Functional Groups on Silicon: 1,1‐Organoboration of Dialkynylsilanes , 2009 .

[37]  Y. Matano,et al.  A convenient method for the synthesis of alpha-ethynylphospholes and modulation of their pi-conjugated systems. , 2009, Angewandte Chemie.

[38]  M. Hissler,et al.  Synthesis, electronic properties, and reactivity of phospholes and 1,1'-biphospholes bearing 2- or 3-thienyl C-substituents. , 2009, Chemistry.

[39]  R. Fröhlich,et al.  Reaction of Bis(alkynyl)silanes with Tris(pentafluorophenyl)borane: Synthesis of Bulky Silole Derivatives by Means of 1,1‐Carboboration under Mild Reaction Conditions , 2009 .

[40]  Y. Matano,et al.  Design and synthesis of phosphole-based pi systems for novel organic materials. , 2009, Organic & biomolecular chemistry.

[41]  R. Réau,et al.  pi-Conjugated phosphole derivatives: synthesis, optoelectronic functions and coordination chemistry. , 2008, Dalton transactions.

[42]  H. Yamada,et al.  Phosphonium- and borate-bridged zwitterionic ladder stilbene and its extended analogues. , 2008, Angewandte Chemie.

[43]  Masato Tanaka,et al.  Base-mediated cyclization reaction of 2-alkynylphenylphosphine oxides: synthesis and photophysical properties of benzo[b]phosphole oxides. , 2008, Organic letters.

[44]  K. Tamao,et al.  Bis-phosphoryl-bridged stilbenes synthesized by an intramolecular cascade cyclization. , 2008, Organic letters.

[45]  Y. Matano,et al.  Synthesis of 2-aryl-5-styrylphospholes: promising candidates for the phosphole-based NLO chromophores. , 2007, The Journal of organic chemistry.

[46]  E. Hey‐Hawkins,et al.  Electrocatalytic reduction of aryldichlorophosphines with the (2,2′-bipyridine)nickel complexes , 2007 .

[47]  Y. Matano,et al.  A convenient method for the synthesis of 2,5-difunctionalized phospholes bearing ester groups. , 2006, Journal of Organic Chemistry.

[48]  B. Wrackmeyer Metallacyclopentadienes and related heterocycles via 1,1‐organoboration of alkyn‐1‐ylmetal compounds , 2006 .

[49]  T. Baumgartner,et al.  From model compounds to extended pi-conjugated systems: synthesis and properties of dithieno[3,2-b:2',3'-d]phospholes. , 2005, Chemistry.

[50]  T. Baumgartner,et al.  Das Dithieno[3,2‐b:2′,3′‐d]phosphol‐System: ein neuartiger Baustein für stark lumineszierende π‐konjugierte Materialien , 2004 .

[51]  T. Baumgartner,et al.  The dithieno[3,2-b:2',3'-d]phosphole system: a novel building block for highly luminescent pi-conjugated materials. , 2004, Angewandte Chemie.

[52]  Saqib Ali,et al.  Novel organotin halides. Organometallic substituted stannoles and alkene derivatives with tinchlorine and tinbromine bonds—exceptionally small magnitude of coupling constants ∣1J(119Sn, 13C)∣ , 2002 .

[53]  M. Hissler,et al.  Phosphole-containing pi-conjugated systems: from model molecules to polymer films on electrodes. , 2001, Chemistry.

[54]  L Nyulászi,et al.  Aromaticity of phosphorus heterocycles. , 2001, Chemical reviews.

[55]  B. Wrackmeyer,et al.  1-Boraadamantane: reactivity towards di(1-alkynyl)silicon and -tin compounds: first access to 7-metalla-2,5-diboranorbornane derivatives. , 2001, Chemistry.

[56]  M. Ogasawara,et al.  Synthesis and Characterization of a Novel Chiral Phosphole and Its Derivatives , 2001 .

[57]  G. Balavoine,et al.  Convenient route for the preparation of unsymmetrical phospholes via zirconacyclopentadienes , 2000 .

[58]  D. Parks,et al.  Synthesis, Properties, and Hydroboration Activity of the Highly Electrophilic Borane Bis(pentafluorophenyl)borane, HB(C6F5)21 , 1998 .

[59]  B. Wrackmeyer 1,1-organoboration of alkynylsilicon, -germanium, -tin and -lead compounds , 1995 .

[60]  W. A. Nugent,et al.  Metallacycle Transfer from Zirconium to Main Group Elements: A Versatile Synthesis of Heterocycles , 1994 .

[61]  B. Wrackmeyer,et al.  Organo‐substituierte Silole durch zweifache Organoborierung von Di‐1‐alkinylsilanen , 1993 .

[62]  A. Sebald,et al.  Organotin cations stabilized by π coordination – synthesis and NMR studies in solution and in the solid state , 1992 .

[63]  G. Kehr,et al.  Organoborierung von Tetrakis(trimethylsilylethinyl)stannan – Röntgenstrukturanalyse eines 5‐Stannaspiro[4.4]nona‐1,3,6,8‐tetraen‐Derivates[1] , 1992 .

[64]  G. Kehr,et al.  π‐Koordination an Diorganozinn‐Dikationen , 1991 .

[65]  G. Kehr,et al.  π-Coordination of Diorganotin Dications† , 1991 .

[66]  F. Mathey,et al.  New reactivity of phosphirenes (phosphacyclopropenes). synthesis of allenylphosphines and of functional phosphirenes. , 1991 .

[67]  W. A. Nugent,et al.  Synthesis of main group heterocycles by metallacycle transfer from zirconium , 1988 .

[68]  F. Mathey The organic chemistry of phospholes , 1988 .

[69]  A. Marinetti,et al.  Insertion of terminal alkynes into the phosphirene ring , 1987 .

[70]  F. Mathey,et al.  A simple preparation of tervalent phosphirenes , 1986 .

[71]  P. Savignac,et al.  An Improved One-Pot Synthesis of Phospholes , 1981 .

[72]  B. Wrackmeyer,et al.  Organoborierung von alkinylstannanen : IV. Zur darstellung verschiedenartig substituierter 1-stannacyclopentadiene , 1978 .

[73]  G. Märkl,et al.  Eine einfache Synthese von Phospholen , 1967 .

[74]  G. Märkl,et al.  A Simple Synthesis of Phospholes , 1967 .

[75]  A. Massey,et al.  Perfluorophenyl derivatives of the elements , 1964 .

[76]  A. Massey,et al.  Perfluorophenyl derivatives of the elements : I. Tris(pentafluorophenyl)boron , 1964 .

[77]  F. Johnson,et al.  NOVEL HETEROCYCLO PENTADIENES , 1959 .

[78]  G. Wittig,et al.  Zur Reaktionsweise des Pentaphenyl-phosphors und einiger Derivate , 1953 .