siRNA screen identifies QPCT as a druggable target for Huntington’s disease

[1]  Hyundong Song,et al.  Inhibition of glutaminyl cyclase ameliorates amyloid pathology in an animal model of Alzheimer's disease via the modulation of γ-secretase activity. , 2014, Journal of Alzheimer's disease : JAD.

[2]  Georg K. A. Hochberg,et al.  The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity , 2014, Proceedings of the National Academy of Sciences.

[3]  N. Hattori,et al.  Large-Scale RNA Interference Screening in Mammalian Cells Identifies Novel Regulators of Mutant Huntingtin Aggregation , 2014, PloS one.

[4]  A. Scaloni,et al.  The cytosolic chaperone &agr;-crystallin B rescues folding and compartmentalization of misfolded multispan transmembrane proteins , 2013, Journal of Cell Science.

[5]  D. Housman,et al.  Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease , 2013, Proceedings of the National Academy of Sciences.

[6]  S. Mooney,et al.  A Genome-Scale RNA–Interference Screen Identifies RRAS Signaling as a Pathologic Feature of Huntington's Disease , 2012, PLoS genetics.

[7]  M. Yamaguchi,et al.  Effect of αB-Crystallin on Protein Aggregation in Drosophila , 2012, Journal of biomedicine & biotechnology.

[8]  Jean-Philippe Vert,et al.  Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons , 2012, BMC Genomics.

[9]  Andreas Bracher,et al.  Molecular chaperones in protein folding and proteostasis , 2011, Nature.

[10]  C. Parthier,et al.  Structures of glycosylated mammalian glutaminyl cyclases reveal conformational variability near the active center. , 2011, Biochemistry.

[11]  A. H. Wang,et al.  Structures of Human Golgi-resident Glutaminyl Cyclase and Its Complexes with Inhibitors Reveal a Large Loop Movement upon Inhibitor Binding* , 2011, The Journal of Biological Chemistry.

[12]  E. Snapp,et al.  Formation and Toxicity of Soluble Polyglutamine Oligomers in Living Cells , 2010, PloS one.

[13]  Cameron Torcassi,et al.  Matrix Metalloproteinases Are Modifiers of Huntingtin Proteolysis and Toxicity in Huntington's Disease , 2010, Neuron.

[14]  Elena Cattaneo,et al.  Molecular mechanisms and potential therapeutical targets in Huntington's disease. , 2010, Physiological reviews.

[15]  Martin J. Scanlon,et al.  Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation , 2010, Proceedings of the National Academy of Sciences.

[16]  N. Perrimon,et al.  A Genomewide RNA Interference Screen for Modifiers of Aggregates Formation by Mutant Huntingtin in Drosophila , 2010, Genetics.

[17]  C. Dobson,et al.  The Interaction of αB-Crystallin with Mature α-Synuclein Amyloid Fibrils Inhibits Their Elongation , 2010, Biophysical journal.

[18]  C. Waudby,et al.  The in teraction of alphaB-crystallin with mature alpha-synuclein amyloid fi brils inhibits their elongation , 2010 .

[19]  M. Diamond,et al.  Y-27632 improves rotarod performance and reduces huntingtin levels in R6/2 mice , 2009, Neurobiology of Disease.

[20]  Hans-Ulrich Demuth,et al.  Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer's disease–like pathology , 2008, Nature Medicine.

[21]  D. Rubinsztein,et al.  Huntington's disease: from pathology and genetics to potential therapies. , 2008, The Biochemical journal.

[22]  D. Rubinsztein,et al.  Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. , 2008, Nature chemical biology.

[23]  D. Rubinsztein,et al.  p21-activated kinase 1 promotes soluble mutant huntingtin self-interaction and enhances toxicity. , 2008, Human molecular genetics.

[24]  Claudio Soto,et al.  Protein misfolding and neurodegeneration. , 2008, Archives of neurology.

[25]  Osamu Onodera,et al.  Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. , 2008, Human molecular genetics.

[26]  S. Schilling,et al.  Isolation and characterization of glutaminyl cyclases from Drosophila: evidence for enzyme forms with different subcellular localization. , 2007, Biochemistry.

[27]  M. G. Caporaso,et al.  Regulation of ERGIC-53 Gene Transcription in Response to Endoplasmic Reticulum Stress* , 2007, Journal of Biological Chemistry.

[28]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[29]  J. Uney,et al.  Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[30]  T. Hoffmann,et al.  Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. , 2006, Biochimica et biophysica acta.

[31]  György M. Keserü,et al.  Ensemble Docking into Flexible Active Sites. Critical Evaluation of FlexE against JNK-3 and beta-Secretase , 2006, J. Chem. Inf. Model..

[32]  Hans-Ulrich Demuth,et al.  The first potent inhibitors for human glutaminyl cyclase: synthesis and structure-activity relationship. , 2006, Journal of medicinal chemistry.

[33]  T. Ban,et al.  αB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid β-peptide and β2-microglobulin , 2005 .

[34]  Nancy M Bonini,et al.  Drosophila as a model for human neurodegenerative disease. , 2005, Annual review of genetics.

[35]  A. H. Wang,et al.  Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Steve D. M. Brown,et al.  Dynein mutations impair autophagic clearance of aggregate-prone proteins , 2005, Nature Genetics.

[37]  N. Franceschini,et al.  Les phénomènes de pseudopupille dans l'œil composé deDrosophila , 1971, Kybernetik.

[38]  T. Ban,et al.  AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin. , 2005, The Biochemical journal.

[39]  William J. Welsh,et al.  Identification of a Minimal Subset of Receptor Conformations for Improved Multiple Conformation Docking and Two-Step Scoring , 2004, J. Chem. Inf. Model..

[40]  Richard D. Taylor,et al.  Improved protein–ligand docking using GOLD , 2003, Proteins.

[41]  Hans-Joachim Böhm,et al.  A guide to drug discovery: Hit and lead generation: beyond high-throughput screening , 2003, Nature Reviews Drug Discovery.

[42]  T. Hoffmann,et al.  Continuous spectrometric assays for glutaminyl cyclase activity. , 2002, Analytical biochemistry.

[43]  D. Rubinsztein,et al.  Intracellular green fluorescent protein-polyalanine aggregates are associated with cell death. , 2000, The Biochemical journal.

[44]  D. Rubinsztein,et al.  Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  T. Saido Involvement of polyglutamine endolysis followed by pyroglutamate formation in the pathogenesis of triplet repeat/polyglutamine-expansion diseases. , 2000, Medical hypotheses.

[46]  H. Theisen,et al.  Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. , 2000, Human molecular genetics.

[47]  K. Luthman,et al.  Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. , 1999, The Journal of pharmacology and experimental therapeutics.

[48]  D. Rubinsztein,et al.  A molecular investigation of true dominance in Huntington’s disease , 1999, Journal of medical genetics.

[49]  Claire-Anne Gutekunst,et al.  A YAC Mouse Model for Huntington’s Disease with Full-Length Mutant Huntingtin, Cytoplasmic Toxicity, and Selective Striatal Neurodegeneration , 1999, Neuron.

[50]  Iris Salecker,et al.  Polyglutamine-Expanded Human Huntingtin Transgenes Induce Degeneration of Drosophila Photoreceptor Neurons , 1998, Neuron.

[51]  A. Roses,et al.  Oligomerization of expanded-polyglutamine domain fluorescent fusion proteins in cultured mammalian cells. , 1997, Biochemical and biophysical research communications.

[52]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[53]  M. Freeman,et al.  Reiterative Use of the EGF Receptor Triggers Differentiation of All Cell Types in the Drosophila Eye , 1996, Cell.

[54]  J. Dowling,et al.  Retinoic acid alters photoreceptor development in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. W. Davies,et al.  Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic Mice , 1996, Cell.

[56]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[57]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .

[58]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[59]  Manish S. Shah,et al.  A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes , 1993, Cell.

[60]  Jaroslav Král,et al.  A note on grammars with regular restrictions , 1973, Kybernetika.

[61]  N. Franceschini,et al.  [Pseudopupil phenomena in the compound eye of drosophila]. , 1971, Kybernetik.