Three-Dimensional Subdivision Parameterisation for Aerodynamic Shape Optimisation

A novel hierarchical wing parameterisation method based on subdivision surfaces is presented and its performance tested on a range of geometric and aerodynamic optimisation test cases. Subdivision surfaces form a limit surface based on the recursive refinement of an initial network of points. This intrinsically creates a hierarchy of control points that can be used to deform the surface at varying degrees of fidelity. This principle is used to create a multi-resolutional surface parameterisation that can make fine and gross surface changes without losing underlying surface detail. This is then extended to allow multi-resolutional control of arbitrary meshes such as computational surface grids. This parameterisation method is then applied to a range of optimisation problems in a ‘multi-level’ procedure that starts with a low fidelity parametrisation and which is then increased sequentially. These cases are compared against a range of ‘single-level’ schemes that use each level in isolation. It was found that by using the multi-level method significant improvements to both convergence rates and robustness were achieved. In some cases this increased robustness lead to improved final results by successfully exploiting high dimensional design spaces that could not be explored using a fixed number of design variables.

[1]  Christian B Allen,et al.  A Locally Adaptive Subdivision Parameterisation Scheme for Aerodynamic Shape Optimisation , 2016 .

[2]  Daniel J Poole,et al.  54th AIAA Aerospace Sciences Meeting (SciTech) , 2016 .

[3]  C. Allen,et al.  Impact of Shape Parameterisation on Aerodynamic Optimisation of Benchmark Problem , 2016 .

[4]  Christian B Allen,et al.  Progressive Subdivision Curves for Aerodynamic Shape Optimisation , 2016 .

[5]  C. Allen,et al.  A Geometric Comparison of Aerofoil Shape Parameterisation Methods , 2016 .

[6]  Daniel J Poole,et al.  Review of Aerofoil Parameterisation Methods for Aerodynamic Shape Optimisation , 2015 .

[7]  Michael J. Aftosmis,et al.  Adaptive Shape Control for Aerodynamic Design , 2015 .

[8]  Xiaocong Han,et al.  An adaptive geometry parametrization for aerodynamic shape optimization , 2014 .

[9]  Juan J. Alonso,et al.  A Viscous Continuous Adjoint Approach for the Design of Rotating Engineering Applications , 2013 .

[10]  Ulrich Reif,et al.  Generalized Lane-Riesenfeld algorithms , 2013, Comput. Aided Geom. Des..

[11]  M. H. Straathof,et al.  Adjoint Optimization of a Wing Using the CSRT Method , 2011 .

[12]  Thomas J. Cashman,et al.  NURBS-compatible subdivision surfaces , 2011 .

[13]  Praveen Chandrashekarappa,et al.  Wing shape optimization using FFD and twist parameterization , 2010 .

[14]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[15]  Christian B Allen,et al.  Towards automatic structured multiblock mesh generation using improved transfinite interpolation , 2008 .

[16]  Massimiliano Martinelli,et al.  Multi-level gradient-based methods and parametrisation in aerodynamic shape design , 2008 .

[17]  Jean-Antoine Désidéri,et al.  Nested and self-adaptive Bézier parameterizations for shape optimization , 2007, J. Comput. Phys..

[18]  Bowen Zhong,et al.  An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm , 2007, World Congress on Engineering.

[19]  Alain Dervieux,et al.  HIERARCHICAL METHODS FOR SHAPE OPTIMIZATION IN AERODYNAMICS I: Multilevel algorithms for parametric shape optimization , 2006 .

[20]  Jean-Antoine Désidéri,et al.  Multi-Level Parameterization for Shape Optimization in Aerodynamics and Electromagnetics using a Particle Swarm Optimization Algorithm , 2006 .

[21]  R. Duvigneau Adaptive Parameterization using Free-Form Deformation for Aerodynamic Shape Optimization , 2005 .

[22]  Jean-Antoine Desideri,et al.  Inverse shape optimization problems and application to airfoils , 2005 .

[23]  Jean-Antoine Désidéri,et al.  Aerodynamic Shape Optimization using a Full and Adaptive Multilevel Algorithm , 2004 .

[24]  Weiyin Ma,et al.  Subdivision Surfaces for CAD , 2004 .

[25]  Jean-Antoine Désidéri,et al.  Free-form-deformation parameterization for multilevel 3D shape optimization in aerodynamics , 2003 .

[26]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[27]  Malcolm A. Sabin,et al.  Eigenanalysis and Artifacts of Subdivision Curves and Surfaces , 2002, Tutorials on Multiresolution in Geometric Modelling.

[28]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[29]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[30]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[31]  David Salesin,et al.  Multiresolution curves , 1994, SIGGRAPH.

[32]  Alain Dervieux,et al.  A hierarchical approach for shape optimization , 1994 .

[33]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[34]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[35]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[36]  V. Schmitt,et al.  Pressure distributions on the ONERA M6 wing at transonic Mach numbers , 1979 .

[37]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[38]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..