Stochastic simulation of supercritical fluid extraction processes

Process simulation involves the evaluation of output variables by the specification of input variables and process parameters. However, in a real process, input data and parameters cannot be known without uncertainty. This fact may limit the utilization of simulation results to predict plant behavior. In order to achieve a more realistic analysis, the procedure of stochastic simulation can be conducted. This technique is based on a large set of simulation runs where input variables and parameters are randomly selected according to adequate probability density functions. The objective of this work is to illustrate the application of a stochastic simulation procedure to the process of fractionation of orange essential oil, using supercritical carbon dioxide in a multistage extraction column. Analysis of the proposed example demonstrates the importance of the stochastic simulation to develop more reliable designs and operating conditions for a supercritical fluid extraction process.