Impulsive synchronization of discrete-time chaotic systems under communication constraints

Abstract This paper investigates the problem of impulsive synchronization of discrete-time chaotic systems subject to limited communication capacity. Control laws with impulses are derived by using measurement feedback, where the effect of quantization errors is considered. Sufficient conditions for asymptotic stability of synchronization error systems are given in terms of linear matrix inequalities and algebraic inequalities. Some numerical simulations are given to demonstrate the effectiveness of the method.

[1]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[2]  David J. Hill,et al.  Impulsive Synchronization of Chaotic Lur'e Systems by Linear Static Measurement Feedback: An LMI Approach , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  Zhiming Wang,et al.  Chaotic Synchronization with Limited Information , 2008, Int. J. Bifurc. Chaos.

[4]  T. Chai,et al.  Adaptive synchronization between two different chaotic systems with unknown parameters , 2006 .

[5]  Daniel Liberzon,et al.  Quantization, time delays, and nonlinear stabilization , 2006, IEEE Transactions on Automatic Control.

[6]  Lihua Xie,et al.  Robust control of a class of uncertain nonlinear systems , 1992 .

[7]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[8]  Han-Xiong Li,et al.  Master-Slave Synchronization of General Lur'e Systems with Time-Varying Delay and Parameter Uncertainty , 2006, Int. J. Bifurc. Chaos.

[9]  Xinzhi Liu,et al.  Robust Stability of Uncertain Discrete Impulsive Systems , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Lihua Xie,et al.  The sector bound approach to quantized feedback control , 2005, IEEE Transactions on Automatic Control.

[11]  Huijun Gao,et al.  ${\cal H}_{\infty}$ Estimation for Uncertain Systems With Limited Communication Capacity , 2007, IEEE Transactions on Automatic Control.

[12]  Jitao Sun,et al.  Impulsive control and synchronization of general chaotic system , 2006 .

[13]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[14]  Minyue Fu,et al.  State Estimation Using Quantized Measurements , 2008 .

[15]  Xinzhi Liu,et al.  Impulsively synchronizing chaotic systems with delay and applications to secure communication , 2005, Autom..

[16]  Qidi Wu,et al.  Some impulsive synchronization criterions for coupled chaotic systems via unidirectional linear error feedback approach , 2004 .

[17]  M. Yassen Controlling, synchronization and tracking chaotic Liu system using active backstepping design , 2007 .

[18]  Alexander L. Fradkov,et al.  Chaotic observer-based synchronization under information constraints. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Alexander L. Fradkov,et al.  Observer-based synchronization of discrete-time chaotic systems under communication constraints , 2008 .

[20]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[21]  Giuseppe Grassi,et al.  Experimental realization of observer-based hyperchaos synchronization , 2001 .