An Approach to Test Set Generation for Pair-Wise Testing Using Genetic Algorithms

Instead of performing exhaustive testing that tests all possible combinations of input parameter values of a system, it is better to switch to a more efficient and effective testing technique i.e., pair wise testing. In pair wise testing, test cases are designed to cover all possible combinations of each pair of input parameter values. It has been shown that the problem of finding the minimum set of test cases for pair-wise testing is an NP complete problem. In this paper we apply genetic algorithm, a meta heuristic search algorithm, to find an optimal solution to the pair-wise test set generation problem. We present a method to generate initial population using hamming distance and an algorithm to find crossover points for combining individuals selected for reproduction. We describe the implementation of the proposed approach by extending an open source tool PWiseGen and evaluate the effectiveness of the proposed approach. Empirical results indicate that our approach can generate test sets with higher fitness level by covering more pairs of input parameter values.

[1]  James D. McCaffrey,et al.  Generation of Pairwise Test Sets Using a Genetic Algorithm , 2009, 2009 33rd Annual IEEE International Computer Software and Applications Conference.

[2]  A. Hartman Software and Hardware Testing Using Combinatorial Covering Suites , 2005 .

[3]  Wenhua Wang,et al.  An Interaction-Based Test Sequence Generation Approach for Testing Web Applications , 2008, 2008 11th IEEE High Assurance Systems Engineering Symposium.

[4]  Siddhartha R. Dalal,et al.  The Automatic Efficient Test Generator (AETG) system , 1994, Proceedings of 1994 IEEE International Symposium on Software Reliability Engineering.

[5]  Robert Mandl,et al.  Orthogonal Latin squares: an application of experiment design to compiler testing , 1985, CACM.

[6]  Martin Charles Golumbic,et al.  Graph Theory, Combinatorics and Algorithms , 2005 .

[7]  Yuhang Yang,et al.  Green communications and networks , 2012 .

[8]  Moataz A. Ahmed,et al.  Pair-wise test coverage using genetic algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[9]  Tatsuhiro Tsuchiya,et al.  Using artificial life techniques to generate test cases for combinatorial testing , 2004, Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004..

[10]  Wang Shuyan,et al.  Generation of Pairwise Test Sets Using a Novel DPSO Algorithm , 2012 .

[11]  James D. McCaffrey,et al.  An Empirical Study of Pairwise Test Set Generation Using a Genetic Algorithm , 2010, 2010 Seventh International Conference on Information Technology: New Generations.

[12]  Yu Lei,et al.  In-parameter-order: a test generation strategy for pairwise testing , 1998, Proceedings Third IEEE International High-Assurance Systems Engineering Symposium (Cat. No.98EX231).

[13]  José Torres-Jiménez,et al.  Simulated Annealing for Constructing Mixed Covering Arrays , 2012, DCAI.

[14]  José Torres-Jiménez,et al.  Construction of Mixed Covering Arrays of Variable Strength Using a Tabu Search Approach , 2010, COCOA.

[15]  Myra B. Cohen,et al.  Covering array sampling of input event sequences for automated gui testing , 2007, ASE.

[16]  Yoonsik Cheon,et al.  PWiseGen: Generating test cases for pairwise testing using genetic algorithms , 2011, 2011 IEEE International Conference on Computer Science and Automation Engineering.

[17]  Michael L. Fredman,et al.  The AETG System: An Approach to Testing Based on Combinatiorial Design , 1997, IEEE Trans. Software Eng..

[18]  Paolo Tonella,et al.  Combining model-based and combinatorial testing for effective test case generation , 2012, ISSTA 2012.

[19]  D.M. Cohen,et al.  The Combinatorial Design Approach to Automatic Test Generation , 1996, IEEE Softw..

[20]  Binhai Zhu,et al.  Combinatorial Optimization and Applications , 2014, Lecture Notes in Computer Science.