Transforming Selected Concepts Into Dimensions in Latent Semantic Analysis

This study presents a new approach for transforming the latent representation derived from a Latent Semantic Analysis (LSA) space into one where dimensions have nonlatent meanings. These meanings are based on lexical descriptors, which are selected by the LSA user. The authors present three analyses that provide examples of the utility of this methodology. The first analysis demonstrates how document terms can be projected into meaningful new dimensions. The second demonstrates how to use the modified space to perform multidimensional document labeling to obtain a high and substantive reliability between LSA experts. Finally, the internal validity of the method is assessed by comparing an original semantic space with a modified space. The results show high consistency between the two spaces, supporting the conclusion that the nonlatent coordinates generated using this methodology preserve the semantic relationships within the original LSA space.

[1]  M. de Vega Lenguaje, corporeidad y cerebro: Una revisión crítica , 2005 .

[2]  José J. Cañas,et al.  Assessing short summaries with human judgments procedure and latent semantic analysis in narrative and expository texts , 2006, Behavior research methods.

[3]  Arthur C. Graesser,et al.  Strengths, Limitations, and Extensions of LSA , 2007 .

[4]  H. Abdi Factor Rotations in Factor Analyses , 2003 .

[5]  Susan T. Dumais,et al.  Improving the retrieval of information from external sources , 1991 .

[6]  Thomas K. Landauer,et al.  Word Maturity: Computational Modeling of Word Knowledge , 2011, ACL.

[7]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[8]  Walter Kintsch,et al.  Predication , 2001, Cogn. Sci..

[9]  M. Louwerse A Case for Symbol Interdependency 1 Symbolic or Embodied representations : A Case for Symbol Interdependency , 2008 .

[10]  A. Glenberg,et al.  Symbols and Embodiment: Debates on Meaning and Cognition , 2008 .

[11]  Preslav Nakov,et al.  Weight functions impact on LSA performance , 2001 .

[12]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[13]  Peter Wiemer-Hastings,et al.  Latent semantic analysis , 2004, Annu. Rev. Inf. Sci. Technol..

[14]  Hu LSA: First dimension and dimensional weighting , 2003 .

[15]  Benoît Lemaire,et al.  Effects of High-Order Co-occurrences on Word Semantic Similarities , 2006, ArXiv.

[16]  Gerry Stahl,et al.  Developing Summarization Skills through the Use of LSA-Based Feedback , 2000, Interact. Learn. Environ..

[17]  Lucian L. Visinescu,et al.  Text-mining the voice of the people , 2012, Commun. ACM.

[18]  Peter W. Foltz,et al.  Supporting Content-Based Feedback in On-Line Writing Evaluation with LSA , 2000, Interact. Learn. Environ..

[19]  E. B. Andersen,et al.  Modern factor analysis , 1961 .

[20]  Danielle S. McNamara,et al.  Computational Methods to Extract Meaning From Text and Advance Theories of Human Cognition , 2011, Top. Cogn. Sci..

[21]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[22]  Michael W. Berry,et al.  Mathematical Foundations Behind Latent Semantic Analysis , 2007 .

[23]  Bob Rehder,et al.  Using latent semantic analysis to assess knowledge: Some technical considerations , 1998 .

[24]  Ricardo Olmos,et al.  Latent Semantic Analysis Parameters for Essay Evaluation using Small-Scale Corpora* , 2010, J. Quant. Linguistics.

[25]  Linear algebra, a concrete introduction , 1982 .

[26]  Peter J. Kwantes,et al.  Comparing Methods for Single Paragraph Similarity Analysis , 2011, Top. Cogn. Sci..

[27]  Verónica Dahl,et al.  Meaning in Context , 2005, CONTEXT.

[28]  Arthur C. Graesser,et al.  Using LSA in AutoTutor: Learning through mixed-initiative dialogue in natural language. , 2007 .

[29]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[30]  Danielle S. McNamara,et al.  Handbook of latent semantic analysis , 2007 .

[31]  Walter Kintsch,et al.  Comprehension: A Paradigm for Cognition , 1998 .

[32]  Danielle S. McNamara,et al.  Evaluating Self-Explanations in iSTART , 2007 .

[33]  Ricardo Olmos,et al.  New algorithms assessing short summaries in expository texts using latent semantic analysis , 2009, Behavior research methods.

[34]  W. Kintsch Metaphor comprehension: A computational theory , 2000, Psychonomic bulletin & review.

[35]  Phil Wood Confirmatory Factor Analysis for Applied Research , 2008 .