Chaos induced by regular snap-back repellers

Abstract This paper is concerned with chaos induced by regular snap-back repellers. One new criterion of chaos induced by strictly coupled-expanding maps in compact sets of metric spaces is established. By employing this criterion, the nondegenerateness assumption in the Marotto theorem established in 1978 is weakened. In addition, it is proved that a regular snap-back repeller and a regular homoclinic orbit to a regular expanding fixed point in finite-dimensional spaces imply chaos in the sense of Li–Yorke. An illustrative example is provided with computer simulations.

[1]  Guanrong Chen,et al.  Chaos of discrete dynamical systems in complete metric spaces , 2004 .

[2]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[3]  Wen Huang,et al.  Devaney's chaos or 2-scattering implies Li–Yorke's chaos , 2002 .

[4]  Guanrong Chen,et al.  Chaotification of Discrete Dynamical Systems in Banach Spaces , 2006, Int. J. Bifurc. Chaos.

[5]  Pei Yu,et al.  Study on chaos induced by turbulent maps in noncompact sets , 2006 .

[6]  Kazuyuki Aihara,et al.  Strange attractors in chaotic neural networks , 2000 .

[7]  Shyan-Shiou Chen,et al.  Transversal homoclinic orbits in a transiently chaotic neural network. , 2002, Chaos.

[8]  F. R. Marotto On redefining a snap-back repeller , 2005 .

[9]  Guanrong Chen,et al.  SOME NEW CRITERIA OF CHAOS INDUCED BY COUPLED-EXPANDING MAPS , 2006 .

[10]  François Blanchard,et al.  On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).

[11]  J. Banks,et al.  On Devaney's definition of chaos , 1992 .

[12]  Guanrong Chen,et al.  Chaotification of Discrete Dynamical Systems Governed by Continuous Maps , 2005, Int. J. Bifurc. Chaos.

[13]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[14]  K. Deimling Nonlinear functional analysis , 1985 .

[15]  F. R. Marotto Snap-back repellers imply chaos in Rn , 1978 .

[16]  Guanrong Chen,et al.  Discrete chaos in Banach spaces , 2005 .

[17]  T. Kaizoji Speculative Price Dynamics in a Heterogeneous Agent Model , 2002 .

[18]  H. Waelbroeck,et al.  Discrete Chaos , 1996, chao-dyn/9610005.

[19]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[20]  Akitaka Dohtani,et al.  Occurrence of chaos in higher-dimensional discrete-time systems , 1992 .

[21]  Yuming Shi Chaos in first-order partial difference equations , 2008 .

[22]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[23]  Sze-Bi Hsu,et al.  Snapback repellers as a cause of chaotic vibration of the wave equation with a van der Pol boundary condition and energy injection at the middle of the span , 1998 .

[24]  R. Dodd,et al.  Snap-back repellers and chaos in a discrete population model with delayed recruitment , 1983 .

[25]  Xiao-Song Yang,et al.  Horseshoes in piecewise continuous maps , 2004 .

[26]  Guanrong Chen,et al.  Chaotification via arbitrarily Small Feedback Controls: Theory, Method, and Applications , 2000, Int. J. Bifurc. Chaos.

[27]  W. A. Coppel,et al.  Dynamics in One Dimension , 1992 .

[28]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .