Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI)

Using a non-invasive MRI technique for measuring the refractive index distribution through the crystalline lens, refractive index maps were obtained through 20 intact isolated human lenses (7-82years). Focal length measurements, obtained by simulated light ray propagation through each index map were found to be in agreement with direct measurements performed on a scanning laser apparatus. With increasing age, the refractive index profiles became flatter in the central region, accompanied by steepening of the profile in the periphery. This appears to be an important mechanism underlying the observed changes in power and longitudinal aberration of the human lens.

[1]  G Smith,et al.  Nondestructive Method of Constructing Three‐Dimensional Gradient Index Models for Crystalline Lenses: I. Theory and Experiment , 1988, American journal of optometry and physiological optics.

[2]  N. Brown,et al.  The shape of the lens equator. , 1974, Experimental eye research.

[3]  G Smith,et al.  Determination and modeling of the 3-D gradient refractive indices in crystalline lenses. , 1988, Applied optics.

[4]  Vision Research , 1961, Nature.

[5]  David A. Atchison,et al.  Continuous gradient index and shell models of the human lens , 1995, Vision Research.

[6]  Pablo Artal,et al.  Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Jan Louise Ungerer Problems and solutions in the optometric management of presbyopic airline pilots , 1986 .

[8]  A. S. Vilupuru,et al.  Optical and biometric relationships of the isolated pig crystalline lens , 2001, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[9]  Anurag Sharma,et al.  Tracing rays through graded-index media: a new method. , 1982, Applied optics.

[10]  Jane F. Koretz,et al.  Accommodation and presbyopia in the human eye—aging of the anterior segment , 1989, Vision Research.

[11]  Sergio Barbero,et al.  ACCURACY AND POSSIBILITIES FOR EVALUATING THE LENS GRADIENT–INDEX USING A RAY TRACING TOMOGRAPHY GLOBAL OPTIMIZATION STRATEGY , 2004 .

[12]  N. Brown,et al.  The change in lens curvature with age. , 1974, Experimental eye research.

[13]  G. Kluxen,et al.  [In vivo measurement of the distribution of the refractive index of the human lens using a Scheimpflug photo of the anterior eye segment and a helium-neon laser beam]. , 1990, Fortschritte der Ophthalmologie : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[14]  G. van der Heijde,et al.  The Thickness of the Aging Human Lens Obtained from Corrected Scheimpflug Images , 2001, Optometry and vision science : official publication of the American Academy of Optometry.

[15]  B K Pierscionek,et al.  Refractive Index Gradient of Human Lenses , 1989, Optometry and vision science : official publication of the American Academy of Optometry.

[16]  Austin Roorda,et al.  A population study on changes in wave aberrations with accommodation. , 2004, Journal of vision.

[17]  R. Kröger Methods to estimate dispersion in vertebrate ocular media. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[18]  D A Atchison,et al.  The optical modelling of the human lens , 1991, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[19]  B. Philipson,et al.  Normal human lens - the distribution of protein. , 1981, Experimental eye research.

[20]  David A. Atchison,et al.  Optics of the Human Eye , 2023 .

[21]  M. Campbell,et al.  Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia , 1999, Vision Research.

[22]  Christopher A. Cook,et al.  Aging of the human crystalline lens and anterior segment , 1994, Vision Research.

[23]  J F Koretz,et al.  Aging of the human lens: changes in lens shape at zero-diopter accommodation. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  Melanie C. W. Campbell,et al.  Measurement of refractive index in an intact crystalline lens , 1984, Vision Research.

[25]  M. Campbell,et al.  Presbyopia and the optical changes in the human crystalline lens with age , 1998, Vision Research.

[26]  Christopher W. Tyler,et al.  Component analysis of BOLD response , 2004 .

[27]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[28]  Tomographic Method for Measurement of the Refractive Index Profile of Optical Fibre Preforms and Rod GRIN Lenses , 2002 .

[29]  David A Atchison,et al.  Explanation of the lens paradox. , 2002, Optometry and vision science : official publication of the American Academy of Optometry.

[30]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[31]  J. Pope,et al.  Measuring optical properties of an eye lens using magnetic resonance imaging. , 2004, Magnetic resonance imaging.

[32]  D A Atchison,et al.  Modeling the power of the aging human eye. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[33]  B K Pierscionek,et al.  Refractive index contours in the human lens. , 1997, Experimental eye research.

[34]  George Smith,et al.  The spherical aberration of the crystalline lens of the human eye , 2001, Vision Research.

[35]  K. Iwata,et al.  Model of refractive-index distribution in the rabbit crystalline lens. , 1968, Journal of the Optical Society of America.

[36]  J L Semmlow,et al.  Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. , 1999, Investigative ophthalmology & visual science.

[37]  Oleg Pomerantzeff,et al.  Wide-angle optical model of the eye. , 1984 .

[38]  高橋 秀俊,et al.  Japanese Journal of Applied Physics , 1962, Nature.

[39]  I H Al-Ahdali,et al.  Examination of the effect of the fibrous structure of a lens on the optical characteristics of the human eye: a computer-simulated model. , 1995, Applied optics.

[40]  C. Pask,et al.  Nondestructive index profile measurement of noncircular optical fibre preforms , 1978 .

[41]  M. Dubbelman,et al.  The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox , 2001, Vision Research.

[42]  Pak Lim Chu,et al.  Nondestructive measurement of index profile of an optical-fibre preform , 1977 .

[43]  Ludwig Matthiessen Untersuchungen über den Aplanatismus und die Periscopie der Krystalllinsen in den Augen der Fische , 1880, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[44]  G J Wang,et al.  Wide‐Angle Optical Model of the Eye , 1972, American journal of optometry and physiological optics.

[45]  C. A. Cook,et al.  Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[46]  D. Atchison,et al.  Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro , 2002, Vision Research.