Vinogradov's mean value theorem via efficient congruencing, II
暂无分享,去创建一个
[1] K. F. Roth,et al. The Method of Trigonometrical Sums in the Theory of Numbers , 2004 .
[2] R. Vaughan. On Waring's Problem for Smaller Exponents , 1986 .
[3] D. R. Heath-Brown. Weyl's Inequality, Hua's Inequality, and Waring's Problem , 1988 .
[4] Trevor D. Wooley,et al. ON VINOGRADOV'S MEAN VALUE THEOREM , 1992 .
[5] T. Wooley. Quasi-diagonal behaviour in certain mean value theorems of additive number theory , 1994 .
[6] K. D. Boklan. The asymptotic formula in Waring's problem , 1994 .
[7] K. Ford,et al. New estimates for mean values of Weyl sums , 1995 .
[8] M. Nathanson. Weyl’s inequality , 1996 .
[9] Some remarks on Vinogradov's mean value theorem and Tarry's problem , 1996 .
[10] Trevor D. Wooley,et al. A note on simultaneous congruences , 1996 .
[11] A special case of Vinogradov's mean value theorem , 1997 .
[12] R. C. Vaughan. The Hardy–Littlewood method: Frontmatter , 1997 .
[13] Anatoliĭ Alekseevich Karat︠s︡uba,et al. Trigonometric Sums in Number Theory and Analysis , 2004 .
[14] S. Parsell. On the Bombieri–Korobov estimate for Weyl sums , 2009 .
[15] Loo-Keng Hua,et al. Additive Theory of Prime Numbers , 2009 .
[16] Derrick Hart,et al. h-Fold Sums from a Set with Few Products , 2009, SIAM J. Discret. Math..
[17] On Weyl sums for smaller exponents , 2010, 1011.3426.
[18] T. Wooley. The Asymptotic Formula in Waring's Problem , 2012 .
[19] Trevor D. Wooley,et al. Vinogradov's mean value theorem via efficient congruencing, II , 2011, 1112.0358.