Vinogradov's mean value theorem via efficient congruencing, II

We apply the efficient congruencing method to estimate Vinogradov's integral for moments of order 2s, with 1 =k^2-1. In this way we come half way to proving the main conjecture in two different directions. There are consequences for estimates of Weyl type, and in several allied applications. Thus, for example, the anticipated asymptotic formula in Waring's problem is established for sums of s kth powers of natural numbers whenever s>=2k^2-2k-8 (k>=6).

[1]  K. F. Roth,et al.  The Method of Trigonometrical Sums in the Theory of Numbers , 2004 .

[2]  R. Vaughan On Waring's Problem for Smaller Exponents , 1986 .

[3]  D. R. Heath-Brown Weyl's Inequality, Hua's Inequality, and Waring's Problem , 1988 .

[4]  Trevor D. Wooley,et al.  ON VINOGRADOV'S MEAN VALUE THEOREM , 1992 .

[5]  T. Wooley Quasi-diagonal behaviour in certain mean value theorems of additive number theory , 1994 .

[6]  K. D. Boklan The asymptotic formula in Waring's problem , 1994 .

[7]  K. Ford,et al.  New estimates for mean values of Weyl sums , 1995 .

[8]  M. Nathanson Weyl’s inequality , 1996 .

[9]  Some remarks on Vinogradov's mean value theorem and Tarry's problem , 1996 .

[10]  Trevor D. Wooley,et al.  A note on simultaneous congruences , 1996 .

[11]  A special case of Vinogradov's mean value theorem , 1997 .

[12]  R. C. Vaughan The Hardy–Littlewood method: Frontmatter , 1997 .

[13]  Anatoliĭ Alekseevich Karat︠s︡uba,et al.  Trigonometric Sums in Number Theory and Analysis , 2004 .

[14]  S. Parsell On the Bombieri–Korobov estimate for Weyl sums , 2009 .

[15]  Loo-Keng Hua,et al.  Additive Theory of Prime Numbers , 2009 .

[16]  Derrick Hart,et al.  h-Fold Sums from a Set with Few Products , 2009, SIAM J. Discret. Math..

[17]  On Weyl sums for smaller exponents , 2010, 1011.3426.

[18]  T. Wooley The Asymptotic Formula in Waring's Problem , 2012 .

[19]  Trevor D. Wooley,et al.  Vinogradov's mean value theorem via efficient congruencing, II , 2011, 1112.0358.