Quantum Zeno Effect in Open Quantum Systems

We prove the quantum Zeno effect in open quantum systems whose evolution, governed by quantum dynamical semigroups, is repeatedly and frequently interrupted by the action of a quantum operation. For the case of a quantum dynamical semigroup with a bounded generator, our analysis leads to a refinement of existing results and extends them to a larger class of quantum operations. We also prove the existence of a novel strong quantum Zeno limit for quantum operations for which a certain spectral gap assumption, which all previous results relied on, is lifted. The quantum operations are instead required to satisfy a weaker property of strong power-convergence. In addition, we establish, for the first time, the existence of a quantum Zeno limit for open quantum systems in the case of unbounded generators. We also provide a variety of physically interesting examples of quantum operations to which our results apply.

[1]  Giacomo De Palma,et al.  Passive States Optimize the Output of Bosonic Gaussian Quantum Channels , 2015, IEEE Transactions on Information Theory.

[2]  Takashi Ichinose,et al.  Correction to: Note on a Product Formula Related to Quantum Zeno Dynamics , 2021 .

[3]  Franco Nori,et al.  Deterministic generation of large cluster states using non-deterministic collective measurements based on quantum Zeno effect , 2007 .

[4]  W. Natomiast,et al.  106 , 2018, The Devil's Fork.

[5]  P. Exner,et al.  A Product Formula Related to Quantum Zeno Dynamics , 2003, Annales Henri Poincaré.

[6]  R. Carbone,et al.  Exponential L-convergence of quantum Markov semigroups on B(h) , 2007 .

[7]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[8]  K. Temme,et al.  Quantum logarithmic Sobolev inequalities and rapid mixing , 2012, 1207.3261.

[9]  Tosio Kato Perturbation theory for linear operators , 1966 .

[10]  P. Facchi,et al.  Quantum Zeno dynamics: mathematical and physical aspects , 2008, 0903.3297.

[11]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[12]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[13]  J. D. Franson,et al.  Quantum computing using single photons and the Zeno effect , 2004 .

[14]  Valentin A. Zagrebnov Comments on the Chernoff √ n-Lemma , 2016 .

[15]  A. Beskow,et al.  CONCEPT OF WAVE FUNCTION AND THE IRREDUCIBLE REPRESENTATIONS OF THE POINCARE GROUP. II. UNSTABLE SYSTEMS AND THE EXPONENTIAL DECAY LAW. , 1967 .

[16]  Jochen Glück A note on approximation of operator semigroups , 2015 .

[17]  Paul R. Chernoff,et al.  Perturbations of dissipative operators with relative bound one , 1972 .

[18]  B. Zegarliński,et al.  Hypercontractivity in Noncommutative LpSpaces , 1999 .

[19]  Michael Lin,et al.  On the uniform ergodic theorem , 1974 .

[20]  Н. Грейда,et al.  17 , 2019, Magical Realism for Non-Believers.

[21]  Franco Fagnola,et al.  Quadratic open quantum harmonic oscillator , 2019 .

[22]  Daniel A. Lidar,et al.  Zeno effect for quantum computation and control. , 2011, Physical review letters.

[23]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[24]  Valentin Zagrebnov Comments on the Chernoff $\sqrt$ n-Lemma , 2016 .

[25]  Sakinah,et al.  Vol. , 2020, New Medit.

[26]  Jerry J. Koliha,et al.  Power convergence and pseudoinverses of operators in Banach spaces , 1974 .

[27]  M. Birkner,et al.  Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .

[28]  Paul R. Chernoff,et al.  Note on product formulas for operator semigroups , 1968 .

[29]  R. Carbone,et al.  ExponentialL2-convergence of quantum Markov semigroups on $$\mathcal{B}(h)$$ , 2000 .

[30]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[31]  Mate Matolcsi On quasi-contractivity of C0-semigroups on Banach spaces , 2004 .

[32]  Stuart P. Lloyd On the uniform ergodic theorem of Lin , 1981 .

[33]  Yuri Tomilov,et al.  On convergence rates in approximation theory for operator semigroups , 2013, 1307.1626.

[34]  Hiromichi Nakazato,et al.  Purification through Zeno-like measurements. , 2003, Physical review letters.

[35]  Thomas M. Liggett,et al.  Exponential $L_2$ Convergence of Attractive Reversible Nearest Particle Systems , 1989 .

[36]  J. Z. Bern'ad Product formulas in the framework of mean ergodic theorems , 2018 .

[37]  Paolo Facchi,et al.  Quantum Zeno Dynamics from General Quantum Operations , 2018, Quantum.

[38]  Charles N. Friedman Continual measurements in the spacetime formation of nonrelativistic quantum mechanics , 1976 .

[39]  Máté Matolcsi,et al.  Trotter’s product formula for projections , 2003 .

[40]  F. Nori,et al.  Quantum entanglement via two-qubit quantum Zeno dynamics , 2008 .

[41]  J. Arazy,et al.  More on convergence in unitary matrix spaces , 1981 .

[42]  Markus Haase,et al.  The Functional Calculus for Sectorial Operators , 2006 .

[43]  T. Eisner,et al.  Ergodic Theorems , 2019, Probability.

[44]  Wineland,et al.  Quantum Zeno effect. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[45]  Pavel Exner,et al.  Unstable system dynamics: Do we understand it fully? , 2007 .

[46]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[47]  Nicholas A. Peters,et al.  Counterfactual quantum computation through quantum interrogation , 2006, Nature.

[48]  F. Cipriani,et al.  Spectral Analysis and Feller Property for Quantum Ornstein–Uhlenbeck Semigroups , 2000 .

[49]  Y. Katznelson,et al.  On power bounded operators , 1986 .

[50]  Benni Reznik,et al.  Correcting quantum errors with the Zeno effect , 2004 .

[51]  Michael M. Wolf,et al.  Quantum Zeno effect generalized , 2019, Journal of Mathematical Physics.

[52]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[53]  48 , 2015, Slow Burn.

[54]  Mou-Hsiung Chang Quantum Stochastics by Mou-Hsiung Chang , 2015 .

[55]  Maurizio Verri,et al.  Long-time asymptotic properties of dynamical semigroups onW*-algebras , 1982 .

[56]  Franco Fagnola,et al.  Spectral properties of the two-photon absorption and emission process , 2008 .

[57]  Franco Fagnola,et al.  Notes on the Qualitative Behaviour of Quantum Markov Semigroups , 2006 .

[58]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[59]  Franco Fagnola,et al.  THE DECOHERENCE-FREE SUBALGEBRA OF A QUANTUM MARKOV SEMIGROUP WITH UNBOUNDED GENERATOR , 2010 .

[60]  Eric Chang,et al.  49 , 2019, Critical Care Medicine.

[61]  Reinhard F. Werner,et al.  Unbounded Generators of Dynamical Semigroups , 2017, Open Syst. Inf. Dyn..

[62]  H. Kosaki APPLICATIONS OF THE COMPLEX INTERPOLATION METHOD TO A VON NEUMANN ALGEBRA: NON-COMMUTATIVE LP-SPACES , 1984 .

[63]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[64]  Franco Fagnola,et al.  TWO-PHOTON ABSORPTION AND EMISSION PROCESS , 2005 .

[65]  Takashi Ichinose,et al.  Note on a Product Formula Related to Quantum Zeno Dynamics , 2021 .

[66]  Gerald Teschl,et al.  Mathematical Methods in Quantum Mechanics , 2009 .

[67]  Zolt'an Zimbor'as,et al.  Generalized quantum Zeno dynamics and ergodic means , 2018, 1811.02509.

[68]  B. Gutiérrez-Medina,et al.  Observation of the quantum zeno and anti-zeno effects in an unstable system , 2001, Technical Digest. Summaries of papers presented at the Quantum Electronics and Laser Science Conference. Postconference Technical Digest (IEEE Cat. No.01CH37172).

[69]  83 , 2018, The Devil's Fork.

[70]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[71]  Hiromichi Nakazato,et al.  Preparation and entanglement purification of qubits through Zeno-like measurements , 2004 .