Exact Solutions in Modified Gravity Models

We review the exact solutions in modified gravity. It is one of the main problems of mathematical physics for the gravity theory. One can obtain an exact solution if the field equations reduce to a system of ordinary differential equations. In this paper we consider a number of exact solutions obtained by the method of separation of variables. Some applications to Cosmology and BH entropy are briefly mentioned.

[1]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[2]  F. Lobo The Dark side of gravity: Modified theories of gravity , 2008, 0807.1640.

[3]  Adam G. Riess,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1998 .

[4]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[5]  Gravitational Lorentz violations and adjustment of the cosmological constant in asymmetrically warped spacetimes , 2000, hep-th/0012143.

[6]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[7]  Evolution of the Bianchi type I, Bianchi type III, and the Kantowski-Sachs universe: Isotropization and inflation , 1998, gr-qc/9802043.

[8]  V. Bagrov,et al.  New method of integration for the Dirac equation on a curved space‐time , 1992 .

[9]  B. Carter Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations , 1968 .

[10]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[11]  P. Verrocchio,et al.  Inflation for Bianchi type IX models , 1997 .

[12]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[13]  Varun Sahni,et al.  RECONSTRUCTING DARK ENERGY , 2006 .

[14]  E. C. Oliveira,et al.  Klein–Gordon and Dirac Equations in de Sitter Space–Time , 1999 .

[15]  E. Elizalde,et al.  ΛCDM epoch reconstruction from F(R, G) and modified Gauss–Bonnet gravities , 2010, 1001.3636.

[16]  L. Randall,et al.  An Alternative to compactification , 1999, hep-th/9906064.

[17]  A. Friedman On the Curvature of space , 1922 .

[18]  Isotropization of Bianchi-type cosmological solutions in Brans-Dicke theory. , 1995, Physical review. D, Particles and fields.

[19]  S. Capozziello,et al.  Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics , 2010 .

[20]  A. N. Makarenko,et al.  Cosmological solution of the Einstein—Weyl equation , 1998 .

[21]  The Dirac equation in Robertson–Walker spaces: A class of solutions , 1990 .

[22]  Isotropization of Bianchi Models and a New FRW Solution in Brans–Dicke Theory , 2000, gr-qc/0005032.

[23]  V. Bagrov,et al.  Accurate integration of scalar equations in multiscalar-tensor theory , 1995 .

[24]  E. Elizalde,et al.  One-loop f(R) gravity in de Sitter universe , 2005, hep-th/0501096.

[25]  V. Villalba,et al.  Separation of variables and exact solution to Dirac and Weyl equations in Robertson–Walker space‐times , 1990 .

[26]  A. Shapovalov,et al.  Special Stäckel electrovac spacetimes , 1986 .

[27]  Barut,et al.  Exact solutions of the Dirac equation in spatially flat Robertson-Walker space-times. , 1987, Physical review. D, Particles and fields.

[28]  S. Capozziello,et al.  Extended theories of gravity and their cosmological and astrophysical applications , 2007, 0706.1146.

[29]  S. Zerbini,et al.  Static spherically symmetric solutions in F(R) gravity , 2010, 1012.5230.

[30]  S. D. Odintsov,et al.  INTRODUCTION TO MODIFIED GRAVITY AND GRAVITATIONAL ALTERNATIVE FOR DARK ENERGY , 2006, hep-th/0601213.

[31]  D. Sáez-Gómez,et al.  On the ΛCDM Universe in f(G) gravity , 2010, 1009.0902.

[32]  V. Bagrov,et al.  Exact solutions of vacuum Brans-Dicke equations , 1992 .

[33]  R. Ellis,et al.  Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.

[34]  M. Alimohammadi,et al.  Remarks on generalized Gauss-Bonnet dark energy , 2008, 0811.1286.

[35]  A. Friedman Über die Krümmung des Raumes , 1922 .

[36]  M. P. Ryan,et al.  Homogeneous Relativistic Cosmologies , 1975 .

[37]  A. Taub Empty Space-Times Admitting a Three Parameter Group of Motions , 1951 .

[38]  V. Obukhov Cosmological solution in the scalar—tensor theory of gravity , 1997 .

[39]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[40]  I. Kirnos,et al.  Accelerating Cosmologies in Lovelock Gravity with Dilaton , 2009, 0903.0083.

[41]  V. Bagrov,et al.  Integration of the Einstein–Dirac equations , 1996 .

[42]  S. Tsujikawa,et al.  Solar system constraints on f(G) gravity models , 2009, 0907.1830.