Model, identification & analysis of complex stochastic systems: Applications in stochastic partial differential equations and multiscale mechanics

xi 1 Chapter 1: Introduction 1 1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Chapter 2: Asymptotic Distribution for Polynomial Chaos Representation from Data 5 2.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Representation and Characterization of the Random Process from Measurements . . . . 10 2.2.1 Karhunen-Loeve Decomposition: Reduced Order Representation of the Random Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Polynomial Chaos Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Polynomial Chaos Representation from Data . . . . . . . . . . . . . . . . . . . 15 2.2.4 Asymptotic Probability Distribution Function of hxq(λn) . . . . . . . . . . . . 19 2.3 Estimations of the mjpdf of the nKL Vector, the Fisher Information Matrix and the Gradient Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Multivariate Joint Probability Density Function of the nKL Vector . . . . . . . . 21 2.3.2 Relationship between MaxEnt and Maximum Likelihood Probability Models . . 24 2.3.3 MEDE Technique and Some Remarks on the Form of pZ(Z) . . . . . . . . . . 25 2.3.4 Computation of the Fisher Information Matrix, Fn(λ) . . . . . . . . . . . . . . 27 2.3.5 Computation of the Gradient Matrix, h ′ xq (λ) . . . . . . . . . . . . . . . . . . . 28 2.4 Numerical Illustration and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.1 Measurement of the Stochastic Process . . . . . . . . . . . . . . . . . . . . . . 30 2.4.2 Construction and MaxEnt Density Estimation of nKL Vector . . . . . . . . . . . 33 2.4.3 Simulation of the nKL vector and Estimation of the Fisher Information Matrix . 35 2.4.4 Estimation of PC coefficients of Z and Y . . . . . . . . . . . . . . . . . . . . . 37 2.4.5 Determination of Asymptotic Probability Distribution Function of hxq(λn) . . . 39 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

[1]  Martin Ostoja-Starzewski,et al.  Microstructural Randomness and Scaling in Mechanics of Materials , 2007 .

[2]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[3]  N. J. Pagano,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part I - Without Damage , 2006 .

[4]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[5]  H. O. Lancaster Some properties of the bivariate normal distribution considered in the form of a contingency table , 1957 .

[6]  Y. Zou,et al.  Equation-free dynamic renormalization: self-similarity in multidimensional particle system dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Christian Soize A nonparametric model of random uncertainties for reduced matrix models in structural dynamics , 2000 .

[8]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[9]  Fionn P.E. Dunne,et al.  A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Harold S. Park,et al.  Nano Mechanics and Materials: Theory, Multiscale Methods and Applications , 2006 .

[11]  Roger G. Ghanem,et al.  Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[12]  Christian Soize A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics , 2005 .

[13]  Christian Soize,et al.  Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms , 2002 .

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  Mark S. Shephard,et al.  Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force , 2007 .

[16]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[17]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[18]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[19]  G. Phillips Interpolation and Approximation by Polynomials , 2003 .

[20]  ScienceDirect Computational statistics & data analysis , 1983 .

[21]  R. Ghanem,et al.  Polynomial chaos decomposition for the simulation of non-gaussian nonstationary stochastic processes , 2002 .

[22]  Rune Brincker,et al.  Proceedings of the 10th International Modal Analysis Conference , 1993 .

[23]  S. Fang,et al.  Entropy Optimization and Mathematical Programming , 1997 .

[24]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[25]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[26]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[27]  K. Shizawa,et al.  Multiscale crystal plasticity modeling based on geometrically necessary crystal defects and simulation on fine-graining for polycrystal , 2007 .

[28]  Sharon L. Wolchik 1989 , 2009 .

[29]  Christian Soize Random matrix theory for modeling uncertainties in computational mechanics , 2005 .

[30]  J. N. Kapur Maximum-entropy models in science and engineering , 1992 .

[31]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[32]  Roger Ghanem,et al.  Efficient solution of stochastic systems: Application to the embankment dam problem , 2007 .

[33]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[34]  Y. Ren,et al.  On substructure synthesis with FRF data , 1995 .

[35]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[36]  Andy J. Keane,et al.  Vibrational energy flow analysis using a substructure approach: the application of receptance theory to FEA and SEA , 1997 .

[37]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[38]  E. M. Hartwell Boston , 1906 .

[39]  Axel Klar,et al.  Communications in Mathematical Sciences , 2005 .

[40]  Roger G. Ghanem,et al.  An efficient calculation of Fisher information matrix: Monte Carlo approach using prior information , 2007, 2007 46th IEEE Conference on Decision and Control.

[41]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[42]  C. S. Manohar,et al.  Progress in structural dynamics with stochastic parameter variations: 1987-1998 , 1999 .

[43]  V. Pendred University of London , 1907, Nature.

[44]  Ashkan Vaziri,et al.  Cell and biomolecular mechanics in silico. , 2008, Nature materials.

[45]  Andrey L. Piatnitski,et al.  Approximations of Effective Coefficients in Stochastic Homogenization , 2002 .

[46]  R. Ghanem,et al.  Iterative solution of systems of linear equations arising in the context of stochastic finite elements , 2000 .

[47]  Nicholas Zabaras,et al.  A maximum entropy approach for property prediction of random microstructures , 2006 .

[48]  Edwin T. Jaynes Prior Probabilities , 2010, Encyclopedia of Machine Learning.

[49]  Christian Soize Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators , 2006 .

[50]  Michael Ortiz,et al.  Hierarchical modeling in the mechanics of materials , 2000 .

[51]  J. T. Hwang,et al.  Prediction Intervals for Artificial Neural Networks , 1997 .

[52]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[53]  Christian Soize,et al.  Data and model uncertainties in complex aerospace engineering systems , 2005, Journal of Sound and Vibration.

[54]  M. Grigoriu Simulation of stationary non-Gaussian translation processes , 1998 .

[55]  Martin Ostoja-Starzewski,et al.  Microstructural Randomness Versus Representative Volume Element in Thermomechanics , 2002 .

[56]  Lynch,et al.  Acoustic field variability induced by time evolving internal wave fields , 2000, The Journal of the Acoustical Society of America.

[57]  P. A. G. van der Geest,et al.  An algorithm to generate samples of multi-variate distributions with correlated marginals , 1998 .

[58]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[59]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[60]  C. Q. Liu,et al.  A New Method for Analysis of Complex Structures Based on FRF’s of Substructures , 2004 .

[61]  V. Kouznetsova,et al.  Size of a representative volume element in a second-order computational homogenization framework , 2004 .

[62]  A. Charnes,et al.  The role of duality in optimization problems involving entropy functionals with applications to information theory , 1988 .

[63]  Patrick Bogaert,et al.  Temporal GIS: Advanced Functions for Field-Based Applications , 2002 .

[64]  Rajiv K. Kalia,et al.  ATOMISTIC ASPECTS OF CRACK PROPAGATION IN BRITTLE MATERIALS: Multimillion Atom Molecular Dynamics Simulations , 2002 .

[65]  Christian Soize,et al.  Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests , 2007 .

[66]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[67]  George Deodatis,et al.  Simulation of Highly Skewed Non-Gaussian Stochastic Processes , 2001 .

[68]  Russell R. Barton,et al.  Simulation metamodels , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[69]  Richard L. Bielawa,et al.  Generalized Frequency Domain Substructure Synthesis , 1988 .

[70]  J. Joseph,et al.  Fourier Series , 2018, Series and Products in the Development of Mathematics.

[71]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[72]  Roger Ghanem,et al.  Analysis of Eigenvalues and Modal Interaction of Stochastic Systems , 2005 .

[73]  Wing Kam Liu,et al.  Multiresolution analysis for material design , 2006 .

[74]  Jacob Fish,et al.  A mathematical homogenization perspective of virial stress , 2006 .

[75]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[76]  Shane G. Henderson,et al.  Chessboard Distributions and Random Vectors with Specified Marginals and Covariance Matrix , 2002, Oper. Res..

[77]  Peter S. Lomdahl,et al.  LARGE-SCALE MOLECULAR-DYNAMICS SIMULATION OF 19 BILLION PARTICLES , 2004 .

[78]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[79]  A. M. Mathai Jacobians of matrix transformations and functions of matrix argument , 1997 .

[80]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[81]  HE Ixtroductiont,et al.  The Bell System Technical Journal , 2022 .

[82]  George Chryssolouris,et al.  Confidence interval prediction for neural network models , 1996, IEEE Trans. Neural Networks.

[83]  Wei Li,et al.  Comparisons of the size of the representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures , 2007 .

[84]  JOURNAL OF SOUND AND VIBRATION , 1998 .

[85]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[86]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[87]  Shane G. Henderson,et al.  Behavior of the NORTA method for correlated random vector generation as the dimension increases , 2003, TOMC.

[88]  Gerbrand Ceder,et al.  Evaluation of interfacial excess contributions in different phase-field models for elastically inhomogeneous systems , 2013 .

[89]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[90]  Maarten Arnst,et al.  Inversion of probabilistic structural models using measured transfer functions , 2008 .

[91]  Kok-Kwang Phoon,et al.  Simulation of non-Gaussian processes using fractile correlation , 2004 .

[92]  I. Jolliffe Principal Component Analysis , 2002 .

[93]  Roger Ghanem,et al.  Simulation of multi-dimensional non-gaussian non-stationary random fields , 2002 .

[94]  Sondipon Adhikari,et al.  Matrix Variate Distributions for Probabilistic Structural Dynamics , 2007 .

[95]  R. Clemen,et al.  Correlations and Copulas for Decision and Risk Analysis , 1999 .

[96]  Somnath Ghosh,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part II - With Interfacial Debonding , 2006 .

[97]  C Soize,et al.  Maximum entropy approach for modeling random uncertainties in transient elastodynamics. , 2001, The Journal of the Acoustical Society of America.

[98]  Rodney W. Johnson,et al.  Comments on and correction to 'Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy' (Jan 80 26-37) , 1983, IEEE Trans. Inf. Theory.

[99]  Robert H. Headrick,et al.  An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment , 1997 .

[100]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[101]  Roger G. Ghanem,et al.  On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..

[102]  Christian Soize,et al.  Transient responses of dynamical systems with random uncertainties , 2001 .

[103]  Adrianus M. H. Meeuwissen,et al.  Minimally informative distributions with given rank correlation for use in uncertainty analysis , 1997 .

[104]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[105]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[106]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[107]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[108]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[109]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[110]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[111]  Ivo Babuška,et al.  SOLVING STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS BASED ON THE EXPERIMENTAL DATA , 2003 .

[112]  P. C. Pandey,et al.  The Journal of the Acoustical Society of America , 1939 .

[113]  Metals Minerals,et al.  Metallurgical and materials transactions. A, Physical metallurgy and materials science , 1994 .

[114]  P. Forrester Log-Gases and Random Matrices , 2010 .

[115]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[116]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[117]  Daya K. Nagar,et al.  Matrix-variate Kummer-Beta distribution , 2002, Journal of the Australian Mathematical Society.

[118]  S. Mitra A density-free approach to the matrix variate beta distribution , 1970 .

[119]  森山 昌彦,et al.  「確率有限要素法」(Stochastic Finite Element Method) , 1985 .

[120]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[121]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[122]  A Charnes,et al.  A Dual Optimization Framework for Some Problems of Information Theory and Statistics. , 1977 .

[123]  O. L. Maître,et al.  Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation , 2003 .

[124]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[125]  J. A. Salvato John wiley & sons. , 1994, Environmental science & technology.

[126]  Sidney Yip,et al.  Nearly exact solution for coupled continuum/MD fluid simulation , 1999 .

[127]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[128]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[129]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[130]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[131]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[132]  Christian Soize,et al.  Non‐parametric–parametric model for random uncertainties in non‐linear structural dynamics: application to earthquake engineering , 2004 .

[133]  Christian Soize Random matrix theory and non-parametric model of random uncertainties in vibration analysis , 2003 .

[134]  Christian Soize A nonparametric model of random uncertainties in linear structural dynamics , 1999 .

[135]  D L Streiner,et al.  An Introduction to Multivariate Statistics , 1993, Canadian journal of psychiatry. Revue canadienne de psychiatrie.

[136]  Stephen A. McGuire,et al.  Introductory Statistics , 2007, Technometrics.

[137]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[138]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[139]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[140]  Chris L. Pettit,et al.  Spectral and multiresolution Wiener expansions of oscillatory stochastic processes , 2006 .

[141]  Georges Cailletaud,et al.  Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity: Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries , 2005 .

[142]  John H. Argyris,et al.  Computer Methods in Applied Mechanics and Engineering , 1990 .

[143]  Adam L. Berger,et al.  A Maximum Entropy Approach to Natural Language Processing , 1996, CL.

[144]  M. Bartlett XX.—On the Theory of Statistical Regression. , 1934 .

[145]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[146]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[147]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[148]  Martin Ostoja-Starzewski,et al.  On the scaling from statistical to representative volume element in thermoelasticity of random materials , 2006, Networks Heterog. Media.

[149]  Ximing Wu,et al.  Calculation of Maximum Entropy Densities with Application to Income Distribtuions , 2002 .

[150]  A. Rollett,et al.  3D reconstruction of microstructure in a commercial purity aluminum , 2006 .

[151]  Christian Soize,et al.  Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size , 2008 .

[152]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[153]  A. Izenman Recent Developments in Nonparametric Density Estimation , 1991 .

[154]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[155]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[156]  P. Guttorp,et al.  Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .

[157]  A. Rollett,et al.  Statistically representative three-dimensional microstructures based on orthogonal observation sections , 2004 .

[158]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[159]  Alan Edelman,et al.  The efficient evaluation of the hypergeometric function of a matrix argument , 2006, Math. Comput..

[160]  F. Dunne,et al.  Effective structural unit size in titanium alloys , 2007 .

[161]  Michal Šejnoha,et al.  From random microstructures to representative volume elements , 2007 .

[162]  Fawwaz T. Ulaby,et al.  A computationally efficient multivariate maximum-entropy density estimation (MEDE) technique , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[163]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[164]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[165]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[166]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[167]  H. K. Kesavan,et al.  Probability density function estimation using the MinMax measure , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[168]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[169]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[170]  Andrew T. A. Wood,et al.  Laplace approximations for hypergeometric functions with matrix argument , 2002 .

[171]  Michal Šejnoha,et al.  Numerical evaluation of effective elastic properties of graphite fiber tow impregnated by polymer matrix , 2001 .

[172]  Roger G. Ghanem,et al.  A Multiscale Data Assimilation with the Ensemble Kalman Filter , 2005, Multiscale Model. Simul..

[173]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[174]  N. H. Beebe Multiscale Modeling & Simulation , 2022 .

[175]  Jeroen A. S. Witteveen,et al.  Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .