Clustering multivariate functional data with phase variation

When functional data come as multiple curves per subject, characterizing the source of variations is not a trivial problem. The complexity of the problem goes deeper when there is phase variation in addition to amplitude variation. We consider clustering problem with multivariate functional data that have phase variations among the functional variables. We propose a conditional subject-specific warping framework in order to extract relevant features for clustering. Using multivariate growth curves of various parts of the body as a motivating example, we demonstrate the effectiveness of the proposed approach. The found clusters have individuals who show different relative growth patterns among different parts of the body.

[1]  Removing phase variability to extract a mean shape for juggling trajectories , 2014 .

[2]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[3]  L. Sangalli,et al.  MOX – Report No . 13 / 2008 K-means alignment for curve clustering , 2008 .

[4]  T. Gasser,et al.  Self‐modelling warping functions , 2004 .

[5]  T. Gasser,et al.  Synchronizing sample curves nonparametrically , 1999 .

[6]  J. Ramsay,et al.  Curve registration , 2018, Oxford Handbooks Online.

[7]  Wei Wu,et al.  Generative models for functional data using phase and amplitude separation , 2012, Comput. Stat. Data Anal..

[8]  H. Müller,et al.  Time-synchronized clustering of gene expression trajectories. , 2008, Biostatistics.

[9]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[10]  Gareth M. James Curve alignment by moments , 2007, 0712.1425.

[11]  J. Ramsay,et al.  Combining Registration and Fitting for Functional Models , 2008 .

[12]  Xueli Liu,et al.  Simultaneous curve registration and clustering for functional data , 2009, Comput. Stat. Data Anal..

[13]  T. Gasser,et al.  Alignment of curves by dynamic time warping , 1997 .

[14]  L. Hubert,et al.  Comparing partitions , 1985 .

[15]  Jeng-Min Chiou,et al.  Functional clustering and identifying substructures of longitudinal data , 2007 .

[16]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[17]  Julien Jacques,et al.  Model-based clustering for multivariate functional data , 2013, Comput. Stat. Data Anal..

[18]  T. Gasser,et al.  Searching for Structure in Curve Samples , 1995 .

[19]  Anuj Srivastava,et al.  Statistical Modeling of Curves Using Shapes and Related Features , 2012 .

[20]  T. Gasser,et al.  Contribution of growth phases to adult size. , 2000, Annals of human biology.

[21]  Peter Hall Nonparametric functional data analysis: Theory and practice, F. Ferraty, P. Vieu, in: Springer Series in Statistics. Springer, Berlin (2006), XX, 268pp, 29 illus., Hardcover., ISBN: 978-0-387-30369-7 , 2007 .

[22]  J. A. D. Aston,et al.  Unifying Amplitude and Phase Analysis: A Compositional Data Approach to Functional Multivariate Mixed-Effects Modeling of Mandarin Chinese , 2013, Journal of the American Statistical Association.

[23]  Camille Roth,et al.  Natural Scales in Geographical Patterns , 2017, Scientific Reports.

[24]  Mia Hubert,et al.  Phase and Amplitude-Based Clustering for Functional Data , 2012, Comput. Stat. Data Anal..

[25]  H. Müller,et al.  Pairwise curve synchronization for functional data , 2008 .

[26]  Francesca Ieva,et al.  Multivariate functional clustering for the morphological analysis of electrocardiograph curves , 2013 .

[27]  Jeng-Min Chiou,et al.  Multivariate functional principal component analysis: A normalization approach , 2014 .

[28]  J. O. Ramsay,et al.  Functional Data Analysis (Springer Series in Statistics) , 1997 .

[29]  H. Müller,et al.  Nonparametric Regression Analysis of Growth Curves , 1984 .

[30]  R. Largo,et al.  An analysis of variance of the pubertal and midgrowth spurts for length and width. , 1999, Annals of human biology.

[31]  Padhraic Smyth,et al.  Probabilistic curve-aligned clustering and prediction with regression mixture models , 2004 .

[32]  T. Auton Applied Functional Data Analysis: Methods and Case Studies , 2004 .

[33]  R. Pearl Biometrics , 1914, The American Naturalist.

[34]  Jie Peng,et al.  Time-warped growth processes, with applications to the modeling of boom-bust cycles in house prices , 2014, 1411.5497.

[35]  H. Müller,et al.  Functional Convex Averaging and Synchronization for Time-Warped Random Curves , 2004 .