Representing Paraconsistent Reasoning via Quantified Propositional Logic
暂无分享,去创建一个
Stefan Woltran | Hans Tompits | Torsten Schaub | Philippe Besnard | Torsten Schaub | P. Besnard | H. Tompits | S. Woltran
[1] Bart Selman,et al. Planning as Satisfiability , 1992, ECAI.
[2] B. Russell,et al. Principia Mathematica Vol. I , 1910 .
[3] Gerhard Brewka,et al. Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.
[4] Stefan Woltran,et al. Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas , 2000, AAAI/IAAI.
[5] Hector J. Levesque,et al. A Knowledge-Level Account of Abduction , 1989, IJCAI.
[6] Graham Priest,et al. Reasoning About Truth , 1989, Artif. Intell..
[7] Albert R. Meyer,et al. The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.
[8] Georg Gottlob,et al. Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..
[9] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[10] S. Minato. Binary Decision Diagrams and Applications for VLSI CAD , 1995 .
[11] Richard Statman,et al. Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..
[12] Randal E. Bryant,et al. Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.
[13] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[14] Nicolas Barnier,et al. Solving the Kirkman's schoolgirl problem in a few seconds , 2002 .
[15] Donald W. Loveland,et al. A machine program for theorem-proving , 2011, CACM.
[16] Hans Kleine Büning,et al. Resolution for Quantified Boolean Formulas , 1995, Inf. Comput..
[17] Stefan Woltran,et al. Paraconsistent Reasoning via Quantified Boolean Formulas, I: Axiomatising Signed Systems , 2002, JELIA.
[18] Thomas Lukasiewicz. Proceedings of the 7th International Symposium on the Foundations of Information and Knowledge Systems‚ FoIKS 2012‚ Kiel‚ Germany‚ March 5−9‚ 2012 , 2000 .
[19] Burkhard Monien,et al. A Distributed Algorithm to Evaluate Quantified Boolean Formulae , 2000, AAAI/IAAI.
[20] Arnon Avron,et al. Simple Consequence Relations , 1988, Inf. Comput..
[21] A. Campbell,et al. Progress in Artificial Intelligence , 1995, Lecture Notes in Computer Science.
[22] Daniele Mundici,et al. Satisfiability in Many-Valued Sentential Logic is NP-Complete , 1987, Theor. Comput. Sci..
[23] Elliott Mendelson,et al. Introduction to Mathematical Logic , 1979 .
[24] Sharad Malik,et al. Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation , 2002, CP.
[25] J. McCarthy. Circumscription|a Form of Nonmonotonic Reasoning , 1979 .
[26] Nicholas Rescher,et al. On Inferences from Inconsistent Premises , 1970 .
[27] Marco Schaerf,et al. On the complexity of entailment in propositional multivalued logics , 1996, Annals of Mathematics and Artificial Intelligence.
[28] Wei Li,et al. On logic of paradox , 1995, Proceedings 25th International Symposium on Multiple-Valued Logic.
[29] Claudette Cayrol,et al. Non-monotonic Syntax-Based Entailment: A Classification of Consequence Relations , 1995, ECSQARU.
[30] Stefan Woltran,et al. Encodings for Equilibrium Logic and Logic Programs with Nested Expressions , 2001, EPIA.
[31] Sébastien Konieczny,et al. Three-Valued Logics for Inconsistency Handling , 2002, JELIA.
[32] Jussi Rintanen,et al. Constructing Conditional Plans by a Theorem-Prover , 1999, J. Artif. Intell. Res..
[33] Georg Gottlob,et al. On the computational cost of disjunctive logic programming: Propositional case , 1995, Annals of Mathematics and Artificial Intelligence.
[34] Stefan Woltran,et al. On Computing Solutions to Belief Change Scenarios , 2001, ECSQARU.
[35] Bart Selman,et al. Encoding Plans in Propositional Logic , 1996, KR.
[36] Didier Dubois,et al. Some Syntactic Approaches to the Handling of Inconsistent Knowledge Bases: A Comparative Study Part 1: The Flat Case , 1997, Stud Logica.
[37] Hilary Putnam,et al. A Computing Procedure for Quantification Theory , 1960, JACM.
[38] Christos H. Papadimitriou,et al. Computational complexity , 1993 .
[39] Raymond Reiter,et al. A Logic for Default Reasoning , 1987, Artif. Intell..
[40] Zbigniew Stachniak,et al. Leśniewski's Systems. Protothetic , 1998 .
[41] Richard E. Ladner,et al. The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..
[42] Larry Wos,et al. What Is Automated Reasoning? , 1987, J. Autom. Reason..
[43] U. Egly,et al. On Quantifier Shifting for Quantified Boolean Formulas , 2004 .
[44] Jan Chomicki,et al. Consistent query answers in inconsistent databases , 1999, PODS '99.
[45] Alonzo Church,et al. Introduction to Mathematical Logic , 1991 .
[46] Alan M. Frisch. Inference without Chaining , 1987, IJCAI.
[47] Ofer Arieli,et al. Paraconsistent Preferential Reasoning by Signed Quantified Boolean Formulae , 2004, ECAI.
[48] Pierre Marquis,et al. Complexity Results for Paraconsistent Inference Relations , 2002, KR.
[49] Michael Clarke,et al. Symbolic and Quantitative Approaches to Reasoning and Uncertainty , 1991, Lecture Notes in Computer Science.
[50] Armin Biere,et al. A satisfiability procedure for quantified Boolean formulae , 2003, Discret. Appl. Math..
[51] Hans Tompits. Expressing default abduction problems as quantified Boolean formulas , 2003, AI Commun..
[52] Stefan Woltran,et al. Paraconsistent Reasoning via Quantified Boolean Formulas , II : Circumscribing Inconsistent Theories ? , 2002 .
[53] Marco Schaerf,et al. An Algorithm to Evaluate Quantified Boolean Formulae , 1998, AAAI/IAAI.
[54] Ofer Arieli,et al. Reducing Preferential Paraconsistent Reasoning to Classical Entailment , 2003, Journal of Logic and Computation.
[55] U. Egly,et al. On deciding subsumption problems , 2005 .
[56] S. Leśniewski. Grundzüge eines neuen Systems der Grundlagen der Mathematik , 1929 .
[57] Thomas Schiex,et al. Nonmonotonic reasoning: from complexity to algorithms , 1998, Annals of Mathematics and Artificial Intelligence.
[58] John McCarthy,et al. Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..
[59] Armando Tacchella,et al. QUBE: A System for Deciding Quantified Boolean Formulas Satisfiability , 2001, IJCAR.
[60] Roy Dyckhoff. Automated Reasoning with Analytic Tableaux and Related Methods , 2000, Lecture Notes in Computer Science.
[61] Hudson Turner,et al. Polynomial-Length Planning Spans the Polynomial Hierarchy , 2002, JELIA.
[62] Albert R. Meyer,et al. Word problems requiring exponential time(Preliminary Report) , 1973, STOC.
[63] Bernhard Nebel,et al. Belief Revision and Default Reasoning: Syntax-Based Approaches , 1991, KR.
[64] Torsten Schaub,et al. Circumscribing Inconsistency , 1997, IJCAI.
[65] Tom Bylander,et al. The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..
[66] Philippe Besnard,et al. An Introduction to Default Logic , 1989, Symbolic Computation.
[67] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[68] Frank Wolter,et al. Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.
[69] Didier Dubois,et al. Argumentative inference in uncertain and inconsistent knowledge bases , 1993, UAI.
[70] Jussi Rintanen,et al. Improvements to the Evaluation of Quantified Boolean Formulae , 1999, IJCAI.
[71] N. Rescher,et al. On inference from inconsistent premisses , 1970 .
[72] Graham Priest,et al. The logic of paradox , 1979, J. Philos. Log..
[73] Maurice Bruynooghe,et al. Database Repair by Signed Formulae , 2004, FoIKS.
[74] David A. Basin,et al. QUBOS: Deciding Quantified Boolean Logic Using Propositional Satisfiability Solvers , 2002, FMCAD.
[75] Stefan Woltran,et al. Modal Nonmonotonic Logics Revisited: Efficient Encodings for the Basic Reasoning Tasks , 2002, TABLEAUX.
[76] Torsten Schaub,et al. Signed Systems for Paraconsistent Reasoning , 1998, Journal of Automated Reasoning.
[77] A. N. Prior,et al. The Theory of Implication , 1963 .
[78] Reinhold Letz,et al. Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas , 2002, TABLEAUX.
[79] Celia Wrathall,et al. Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[80] Nicholas Rescher,et al. Plausible reasoning , 1976 .