Representing Paraconsistent Reasoning via Quantified Propositional Logic

Quantified propositional logic is an extension of classical propositional logic where quantifications over atomic formulas are permitted. As such, quantified propositional logic is a fragment of second-order logic, and its sentences are usually referred to as quantified Boolean formulas (QBFs). The motivation to study quantified propositional logic for paraconsistent reasoning is based on two fundamental observations. Firstly, in recent years, practicably efficient solvers for quantified propositional logic have been presented. Secondly, complexity results imply that there is a wide range of paraconsistent reasoning problems which can be efficiently represented in terms of QBFs. Hence, solvers for QBFs can be used as a core engine in systems prototypically implementing several of such reasoning tasks, most of them lacking concrete realisations. To this end, we show how certain paraconsistent reasoning principles can be naturally formulated or reformulated by means of quantified Boolean formulas. More precisely, we describe polynomial-time constructible encodings providing axiomatisations of the given reasoning tasks. In this way, a whole variety of a priori distinct approaches to paraconsistent reasoning become comparable in a uniform setting.

[1]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[2]  B. Russell,et al.  Principia Mathematica Vol. I , 1910 .

[3]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[4]  Stefan Woltran,et al.  Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas , 2000, AAAI/IAAI.

[5]  Hector J. Levesque,et al.  A Knowledge-Level Account of Abduction , 1989, IJCAI.

[6]  Graham Priest,et al.  Reasoning About Truth , 1989, Artif. Intell..

[7]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[8]  Georg Gottlob,et al.  Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..

[9]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[10]  S. Minato Binary Decision Diagrams and Applications for VLSI CAD , 1995 .

[11]  Richard Statman,et al.  Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..

[12]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[13]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[14]  Nicolas Barnier,et al.  Solving the Kirkman's schoolgirl problem in a few seconds , 2002 .

[15]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[16]  Hans Kleine Büning,et al.  Resolution for Quantified Boolean Formulas , 1995, Inf. Comput..

[17]  Stefan Woltran,et al.  Paraconsistent Reasoning via Quantified Boolean Formulas, I: Axiomatising Signed Systems , 2002, JELIA.

[18]  Thomas Lukasiewicz Proceedings of the 7th International Symposium on the Foundations of Information and Knowledge Systems‚ FoIKS 2012‚ Kiel‚ Germany‚ March 5−9‚ 2012 , 2000 .

[19]  Burkhard Monien,et al.  A Distributed Algorithm to Evaluate Quantified Boolean Formulae , 2000, AAAI/IAAI.

[20]  Arnon Avron,et al.  Simple Consequence Relations , 1988, Inf. Comput..

[21]  A. Campbell,et al.  Progress in Artificial Intelligence , 1995, Lecture Notes in Computer Science.

[22]  Daniele Mundici,et al.  Satisfiability in Many-Valued Sentential Logic is NP-Complete , 1987, Theor. Comput. Sci..

[23]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[24]  Sharad Malik,et al.  Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation , 2002, CP.

[25]  J. McCarthy Circumscription|a Form of Nonmonotonic Reasoning , 1979 .

[26]  Nicholas Rescher,et al.  On Inferences from Inconsistent Premises , 1970 .

[27]  Marco Schaerf,et al.  On the complexity of entailment in propositional multivalued logics , 1996, Annals of Mathematics and Artificial Intelligence.

[28]  Wei Li,et al.  On logic of paradox , 1995, Proceedings 25th International Symposium on Multiple-Valued Logic.

[29]  Claudette Cayrol,et al.  Non-monotonic Syntax-Based Entailment: A Classification of Consequence Relations , 1995, ECSQARU.

[30]  Stefan Woltran,et al.  Encodings for Equilibrium Logic and Logic Programs with Nested Expressions , 2001, EPIA.

[31]  Sébastien Konieczny,et al.  Three-Valued Logics for Inconsistency Handling , 2002, JELIA.

[32]  Jussi Rintanen,et al.  Constructing Conditional Plans by a Theorem-Prover , 1999, J. Artif. Intell. Res..

[33]  Georg Gottlob,et al.  On the computational cost of disjunctive logic programming: Propositional case , 1995, Annals of Mathematics and Artificial Intelligence.

[34]  Stefan Woltran,et al.  On Computing Solutions to Belief Change Scenarios , 2001, ECSQARU.

[35]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[36]  Didier Dubois,et al.  Some Syntactic Approaches to the Handling of Inconsistent Knowledge Bases: A Comparative Study Part 1: The Flat Case , 1997, Stud Logica.

[37]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[38]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[39]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[40]  Zbigniew Stachniak,et al.  Leśniewski's Systems. Protothetic , 1998 .

[41]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[42]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[43]  U. Egly,et al.  On Quantifier Shifting for Quantified Boolean Formulas , 2004 .

[44]  Jan Chomicki,et al.  Consistent query answers in inconsistent databases , 1999, PODS '99.

[45]  Alonzo Church,et al.  Introduction to Mathematical Logic , 1991 .

[46]  Alan M. Frisch Inference without Chaining , 1987, IJCAI.

[47]  Ofer Arieli,et al.  Paraconsistent Preferential Reasoning by Signed Quantified Boolean Formulae , 2004, ECAI.

[48]  Pierre Marquis,et al.  Complexity Results for Paraconsistent Inference Relations , 2002, KR.

[49]  Michael Clarke,et al.  Symbolic and Quantitative Approaches to Reasoning and Uncertainty , 1991, Lecture Notes in Computer Science.

[50]  Armin Biere,et al.  A satisfiability procedure for quantified Boolean formulae , 2003, Discret. Appl. Math..

[51]  Hans Tompits Expressing default abduction problems as quantified Boolean formulas , 2003, AI Commun..

[52]  Stefan Woltran,et al.  Paraconsistent Reasoning via Quantified Boolean Formulas , II : Circumscribing Inconsistent Theories ? , 2002 .

[53]  Marco Schaerf,et al.  An Algorithm to Evaluate Quantified Boolean Formulae , 1998, AAAI/IAAI.

[54]  Ofer Arieli,et al.  Reducing Preferential Paraconsistent Reasoning to Classical Entailment , 2003, Journal of Logic and Computation.

[55]  U. Egly,et al.  On deciding subsumption problems , 2005 .

[56]  S. Leśniewski Grundzüge eines neuen Systems der Grundlagen der Mathematik , 1929 .

[57]  Thomas Schiex,et al.  Nonmonotonic reasoning: from complexity to algorithms , 1998, Annals of Mathematics and Artificial Intelligence.

[58]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[59]  Armando Tacchella,et al.  QUBE: A System for Deciding Quantified Boolean Formulas Satisfiability , 2001, IJCAR.

[60]  Roy Dyckhoff Automated Reasoning with Analytic Tableaux and Related Methods , 2000, Lecture Notes in Computer Science.

[61]  Hudson Turner,et al.  Polynomial-Length Planning Spans the Polynomial Hierarchy , 2002, JELIA.

[62]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[63]  Bernhard Nebel,et al.  Belief Revision and Default Reasoning: Syntax-Based Approaches , 1991, KR.

[64]  Torsten Schaub,et al.  Circumscribing Inconsistency , 1997, IJCAI.

[65]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[66]  Philippe Besnard,et al.  An Introduction to Default Logic , 1989, Symbolic Computation.

[67]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[68]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[69]  Didier Dubois,et al.  Argumentative inference in uncertain and inconsistent knowledge bases , 1993, UAI.

[70]  Jussi Rintanen,et al.  Improvements to the Evaluation of Quantified Boolean Formulae , 1999, IJCAI.

[71]  N. Rescher,et al.  On inference from inconsistent premisses , 1970 .

[72]  Graham Priest,et al.  The logic of paradox , 1979, J. Philos. Log..

[73]  Maurice Bruynooghe,et al.  Database Repair by Signed Formulae , 2004, FoIKS.

[74]  David A. Basin,et al.  QUBOS: Deciding Quantified Boolean Logic Using Propositional Satisfiability Solvers , 2002, FMCAD.

[75]  Stefan Woltran,et al.  Modal Nonmonotonic Logics Revisited: Efficient Encodings for the Basic Reasoning Tasks , 2002, TABLEAUX.

[76]  Torsten Schaub,et al.  Signed Systems for Paraconsistent Reasoning , 1998, Journal of Automated Reasoning.

[77]  A. N. Prior,et al.  The Theory of Implication , 1963 .

[78]  Reinhold Letz,et al.  Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas , 2002, TABLEAUX.

[79]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[80]  Nicholas Rescher,et al.  Plausible reasoning , 1976 .