Mortar Upscaling for Multiphase Flow in Porous Media

In mortar space upscaling methods, a reservoir is decomposed into a series of subdomains (blocks) in which independently constructed numerical grids and possibly different physical models and discretization techniques can be employed in each block. Physically meaningful matching conditions are imposed on block interfaces in a numerically stable and accurate way using mortar finite element spaces. Coarse mortar grids and fine subdomain grids provide two-scale approximations. In the resulting effective solution flow is computed in subdomains on the fine scale while fluxes are matched on the coarse scale. In addition the flexibility to vary adaptively the number of interface degrees of freedom leads to more accurate multiscale approximations. This methodology has been implemented in the Center for Subsurface Modeling's multiphysics multiblock simulator IPARS (Integrated Parallel Accurate reservoir Simulator). Computational experiments demonstrate that this approach is scalable in parallel and it can be applied to non-matching grids across the interface, multinumerics and multiphysics models, and mortar adaptivity. Moreover unlike most upscaling approaches the underlying systems can be treated fully implicitly.

[1]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[2]  D. W. Peaceman Fundamentals of numerical reservoir simulation , 1977 .

[3]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[4]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[5]  Mary F. Wheeler,et al.  Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS) , 2001, Numer. Linear Algebra Appl..

[6]  Malgorzata Peszynska,et al.  Advanced Techniques and Algorithms for Reservoir Simulation, III: Multiphysics Coupling for Two Phase Flow in Degenerate Conditions , 2002 .

[7]  Kamy Sepehrnoori,et al.  A New Generation EOS Compositional Reservoir Simulator: Part I - Formulation and Discretization , 1997 .

[8]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[9]  Malgorzata Peszynska,et al.  A distributed computing portal for coupling multi-physics and multiple domains in porous media , 2000 .

[10]  Hector Manuel Klie Krylov-Secant methods for solving large-scale systems of coupled nonlinear parabolic equations , 1997 .

[11]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..

[12]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[13]  Qiang Zhang,et al.  Scale up of flow in porous media , 1995 .

[14]  Mary F. Wheeler,et al.  A parallel, implicit, cell‐centered method for two‐phase flow with a preconditioned Newton–Krylov solver , 1997 .

[15]  Todd Arbogast,et al.  Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..

[16]  Alain Bourgeat,et al.  Homogenized behavior of two-phase flows in naturally fractured reservoirs with uniform fractures distribution , 1984 .

[17]  L. Lake,et al.  Enhanced Oil Recovery , 2017 .

[18]  D. K. Ponting,et al.  An Efficient Fully Implicit Simulator , 1983 .

[19]  Mary F. Wheeler,et al.  Advanced Techniques and Algorithms for Reservoir Simulation, II: The Multiblock Approach in the Integrated Parallel Accurate Reservoir Simulator (IPARS) , 2002 .

[20]  John A. Trangenstein,et al.  Mathematical structure of the black-oil model for petroleum reservoir simulation , 1989 .

[21]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[22]  Derek Banks,et al.  An Efficient Fully Implicit Simulator , 1983 .

[23]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[24]  Peng Wang,et al.  A New Generation EOS Compositional Reservoir Simulator: Part II - Framework and Multiprocessing , 1997 .

[25]  Martin J. Blunt,et al.  A 3D field scale streamline simulator with gravity and changing well conditions , 1996 .

[26]  Ivan Yotov,et al.  Mixed finite element methods for flow in porous media , 1996 .

[27]  Mark Mansfield,et al.  A Renormalisation-Based Upscaling Technique for WAG Floods in Heterogeneous Reservoirs , 1995 .

[28]  Todd Arbogast,et al.  Numerical Subgrid Upscaling of Two-Phase Flow in Porous Media , 2000 .

[29]  Richard E. Ewing,et al.  A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media , 1983 .

[30]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[31]  Qin Lu,et al.  A parallel multi-block black-oil model in multi-model implementation , 2001 .

[32]  J. Mandel,et al.  Balancing domain decomposition for mixed finite elements , 1995 .

[33]  C. Ehlig-Economides,et al.  Petroleum production systems , 1993 .

[34]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[35]  M. Wheeler,et al.  Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .

[36]  L. K. Thomas,et al.  Compositional and Black Oil Reservoir Simulation , 1998 .

[37]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[38]  J. Tinsley Oden,et al.  A two-scale strategy and a posteriori error estimation for modeling heterogeneous structures , 1998 .

[39]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[40]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[41]  Ivan Yotov,et al.  Interface solvers and preconditioners of domain decomposition type for multiphase flow in multiblock porous media , 2001 .

[42]  Malgorzata Peszynska,et al.  Multiphysics coupling of codes , 2000 .

[43]  Todd Arbogast,et al.  Operator-based approach to upscaling the pressure equation , 1998 .

[44]  Faker Ben THE MIXED MORTAR FINITE ELEMENT METHOD FOR THE INCOMPRESSIBLE STOKES PROBLEM: CONVERGENCE ANALYSIS* , 2000 .

[45]  I. Yotov,et al.  Mixed Finite Element Methods on Non-Matching Multiblock Grids , 1996 .

[46]  R. L. Dalton,et al.  Reservoir Simulation (includes associated papers 21606 and 21620 ) , 1990 .

[47]  Todd Arbogast,et al.  A Parallel Multiblock/Multidomain Approach for Reservoir Simulation , 1999 .

[48]  Gianmarco Manzini,et al.  A Mixed Finite Element-Finite Volume Formulation of the Black-Oil Model , 1998, SIAM J. Sci. Comput..

[49]  D. W. Peaceman Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability , 1983 .

[50]  M. Wheeler,et al.  Coupling Different Numerical Algorithms for Two Phase Fluid Flow , 2000 .

[51]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .