Nonlinear Effects of Surface Texturing on the Performance of Journal Bearings in Flexible Rotordynamic Systems

[1]  Jaw-Ren Lin,et al.  The influences of longitudinal surface roughness on sub-critical and super-critical limit cycles of short journal bearings , 2014 .

[2]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[3]  J. Lin The surface roughness effects of transverse patterns on the Hopf bifurcation behaviors of short journal bearings , 2012 .

[4]  Fabrice Thouverez,et al.  Global search of non-linear systems periodic solutions: A rotordynamics application , 2010 .

[5]  H. Cheng,et al.  An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication , 1978 .

[6]  A. Almqvist,et al.  Homogenization of a Reynolds equation describing compressible flow , 2012 .

[7]  Sébastien Baguet,et al.  A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics , 2013 .

[8]  A. S. Sekhar,et al.  Non-Linear Transient Stability Analysis of a Rigid Rotor Supported on Hydrodynamic Journal Bearings with Rough Surfaces , 2000 .

[9]  J. A. Walowit,et al.  A Theory of Lubrication by Microirregularities , 1966 .

[10]  D. Dini,et al.  A Mass-Conserving Complementarity Formulation to Study Lubricant Films in the Presence of Cavitation , 2010 .

[11]  Tiesheng Zheng,et al.  Nonlinear Dynamic Behaviors of a Complex Rotor-Bearing System , 2000 .

[12]  C. J. Myers Bifurcation Theory Applied to Oil Whirl in Plain Cylindrical Journal Bearings , 1984 .

[13]  Patrick Maspeyrot,et al.  Effect of textured area on the performances of a hydrodynamic journal bearing , 2011 .

[14]  Wang-Long Li,et al.  Grip Performance Affected by Water-Induced Wrinkling of Fingers , 2015, Tribology Letters.

[15]  H. G. Elrod,et al.  A General Theory for Laminar Lubrication With Reynolds Roughness , 1979 .

[16]  H. D. Nelson,et al.  Finite Element Simulation of Rotor-Bearing Systems With Internal Damping , 1977 .

[17]  F. Thouverez,et al.  A dynamic Lagrangian frequency–time method for the vibration of dry-friction-damped systems , 2003 .

[18]  J-R Lin Application of the Hopf bifurcation theory to limit cycle prediction of short journal bearings with isotropic roughness effects , 2007 .

[19]  Jean Frene,et al.  Theoretical Analysis of the Incompressible Laminar Flow in a Macro-Roughness Cell , 2003 .

[20]  D. Gropper,et al.  Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings , 2016 .

[21]  G. Stachowiak,et al.  Efficient Solution to the Cavitation Problem in Hydrodynamic Lubrication , 2015, Tribology Letters.

[22]  J. Griffin,et al.  An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems , 1989 .

[23]  D. H. van Campen,et al.  Steady-state behaviour of flexible rotordynamic systems with oil journal bearings , 1994 .

[24]  Fabrice Thouverez,et al.  Essentially nonlinear piezoelectric shunt circuits applied to mistuned bladed disks , 2014 .

[25]  D. Rixen,et al.  Development of a texture averaged Reynolds equation , 2010 .

[26]  Guy Bayada,et al.  An Average Flow Model of the Reynolds Roughness Including a Mass-Flow Preserving Cavitation Model , 2005 .

[27]  J. W. Lund Modal Response of a Flexible Rotor in Fluid-Film Bearings , 1974 .

[28]  Stability of Rough Journal Bearings Using Nonlinear Transient Method , 1995 .

[29]  L. Xie,et al.  Numerical Tracking of Limit Points for Direct Parametric Analysis in Nonlinear Rotordynamics , 2016 .

[30]  L. Persson,et al.  Homogenization of the unstationary incompressible Reynolds equation , 2007 .

[31]  Victor Brizmer,et al.  A Laser Surface Textured Journal Bearing , 2012 .

[32]  H. Elrod A Cavitation Algorithm , 1981 .