Uniaxial strain engineered MoS2 (molybdenite) and chlorine adsorbed MoS2 nanostructures for tuning their electronic and optical properties

[1]  S. Choudhary,et al.  Tuning the electronic and optical properties of molybdenite (MoS2) by adsorption of alkali metals and halogens , 2021 .

[2]  Shaoxian Song,et al.  Tailoring the electronic and optical properties of layered blue phosphorene/ XC (X=Ge, Si) vdW heterostructures by strain engineering , 2021 .

[3]  H. Jappor,et al.  Two-dimensional ZnI2 monolayer as a photocatalyst for water splitting and improvement its electronic and optical properties by strains , 2021 .

[4]  A. Castellanos-Gómez,et al.  Biaxial versus uniaxial strain tuning of single-layer MoS2 , 2020, 2012.11661.

[5]  S. Choudhary,et al.  Visible region absorption in TMDs/phosphorene heterostructures for use in solar energy conversion applications , 2020, RSC advances.

[6]  V. Berry,et al.  Strain engineering in two-dimensional nanomaterials beyond graphene , 2018, Nano Today.

[7]  Lijie Li,et al.  Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2 , 2018, Physica E: Low-dimensional Systems and Nanostructures.

[8]  S. Choudhary,et al.  Tuning the optical properties of phosphorene by adsorption of alkali metals and halogens , 2018, Optical and Quantum Electronics.

[9]  Shaoming Huang,et al.  Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers , 2016, Nano Research.

[10]  Xiangfu Wang,et al.  Tunable electronic properties of GeSe/phosphorene heterostructure from first-principles study , 2016 .

[11]  Golibjon Berdiyorov,et al.  Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations , 2016 .

[12]  Y. Nishi,et al.  The effects of uniaxial and biaxial strain on the electronic structure of germanium , 2016 .

[13]  Longjuan Kong,et al.  Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping , 2016 .

[14]  G. Ryu,et al.  Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer , 2015, Nature Communications.

[15]  Yuhong Huang,et al.  Strain effects on electronic states and lattice vibration of monolayer MoS2 , 2015 .

[16]  Yan Li,et al.  Electric-Field Tunable Band Offsets in Black Phosphorus and MoS2 van der Waals p-n Heterostructure. , 2015, The journal of physical chemistry letters.

[17]  Junsong Yuan,et al.  Exploring atomic defects in molybdenum disulphide monolayers , 2015, Nature Communications.

[18]  Qiliang Li,et al.  Phase transition, effective mass and carrier mobility of MoS2 monolayer under tensile strain , 2015 .

[19]  S. Dou,et al.  Electronic Coupling and Catalytic Effect on H2 Evolution of MoS2/Graphene Nanocatalyst , 2014, Scientific Reports.

[20]  S. Karna,et al.  Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer. , 2014, Physical chemistry chemical physics : PCCP.

[21]  W. Mei,et al.  MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. , 2013, Nanoscale.

[22]  A. Neto,et al.  Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. , 2013, Nano letters.

[23]  S. Lau,et al.  Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. , 2013, ACS nano.

[24]  Ashok Kumar,et al.  Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X¼S, Se, Te) , 2013 .

[25]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[26]  Dong Wang,et al.  Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. , 2013, ACS nano.

[27]  S. Borini,et al.  Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides , 2013, 1301.3469.

[28]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[29]  Wanlin Guo,et al.  Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. , 2012, Physical chemistry chemical physics : PCCP.

[30]  Ashok Kumar,et al.  A first principle Comparative study of electronic and optical properties of 1H – MoS2 and 2H – MoS2 , 2012 .

[31]  G. Pourtois,et al.  First-principles study of strained 2D MoS2 , 2012 .

[32]  V. Shenoy,et al.  Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. , 2012, ACS nano.

[33]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[34]  E. Aktürk,et al.  A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2 , 2011 .

[35]  Lara K. Teles,et al.  Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors , 2011 .

[36]  J. M. Baik,et al.  Band-gap transition induced by interlayer van der Waals interaction in MoS 2 , 2011 .

[37]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[38]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[42]  G. Cocoletzi,et al.  Theoretical analysis of the HfS2 monolayer electronic structure and optical properties under vertical strain effects , 2021 .

[43]  S. Choudhary,et al.  Enhanced Absorption in MoS2/Hg0.33Cd0.66Te Heterostructure for Application in Solar Cell Absorbers , 2019, IEEE Transactions on Nanotechnology.

[44]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[45]  W. Mei,et al.  MoS 2 /MX 2 heterobilayers: bandgap engineering via tensile strain or external electrical fi eld † , 2013 .