Velocity-vorticity-pressure formulation for the Oseen problem with variable viscosity

We propose and analyse an augmented mixed finite element method for the Oseen equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and homogeneous Dirichlet boundary condition for the velocity. The weak formulation includes least-squares terms arising from the constitutive equation and from the incompressibility condition, and we show that it satisfies the hypotheses of the Babu\vska-Brezzi theory. Repeating the arguments of the continuous analysis, the stability and solvability of the discrete problem are established. The method is suited for any Stokes inf-sup stable finite element pair for velocity and pressure, while for vorticity any generic discrete space (of arbitrary order) can be used. A priori and a posteriori error estimates are derived using two specific families of discrete subspaces. Finally, we provide a set of numerical tests illustrating the behaviour of the scheme, verifying the theoretical convergence rates, and showing the performance of the adaptive algorithm guided by residual a posteriori error estimation.

[1]  Daniele Boffi,et al.  STABILITY OF HIGHER ORDER TRIANGULAR HOOD-TAYLOR METHODS FOR THE STATIONARY STOKES EQUATIONS , 1994 .

[2]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[3]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[4]  Volker John,et al.  Finite element methods for the incompressible Stokes equations with variable viscosity , 2015 .

[5]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[6]  Stéphanie Salmon,et al.  Low-order finite element method for the well-posed bidimensional Stokes problem , 2015 .

[7]  J. N. Reddy,et al.  Spectral/ hp least-squares finite element formulation for the Navier-Stokes equations , 2003 .

[8]  Subhashree Mohapatra,et al.  A Non-Conforming Least Squares Spectral Element Formulation for Oseen Equations with Applications to Navier-Stokes Equations , 2016 .

[9]  Yuri Vassilevski,et al.  Multiscale models of blood flow in the compliant aortic bifurcation , 2019, Appl. Math. Lett..

[10]  G. Gatica A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .

[11]  David Trujillo,et al.  Vorticity-velocity-pressure formulation for Stokes problem , 2003, Math. Comput..

[12]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[13]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[14]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[15]  Ricardo Ruiz-Baier,et al.  Analysis and Approximation of a Vorticity–Velocity–Pressure Formulation for the Oseen Equations , 2018, Journal of Scientific Computing.

[16]  Ricardo Ruiz-Baier,et al.  An augmented mixed finite element method for the vorticity-velocity-pressure formulation of the Stokes equations , 2013 .

[17]  Paolo Crosetto,et al.  Quality open source mesh generation for cardiovascular flow simulations , 2012 .

[18]  Suh-Yuh Yang,et al.  On the velocity-vorticity-pressure least-squares finite element method for the stationary incompressible Oseen problem , 2005 .

[19]  Daniela Capatina,et al.  Stabilized finite element method for Navier-Stokes equations with physical boundary conditions , 2007, Math. Comput..

[20]  Maxim A. Olshanskii,et al.  Assessment of a vorticity based solver for the Navier-Stokes equations , 2012 .

[21]  Zhiqiang Cai,et al.  Least‐squares method for the Oseen equation , 2016 .

[22]  J. M. Cascón,et al.  Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analyses , 2017 .

[23]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[24]  Luis F. Gatica,et al.  Mixed Kirchhoff stress–displacement–pressure formulations for incompressible hyperelasticity , 2021 .

[25]  R. Ruiz-Baier,et al.  Incorporating variable viscosity in vorticity-based formulations for Brinkman equations , 2019, Comptes Rendus Mathematique.

[26]  G. Vaidyanathan,et al.  Effect of variable viscosity on thermohaline convection in a porous medium , 1982 .

[27]  Charles G. Speziale,et al.  On the advantages of the vorticity-velocity formulations of the equations of fluid dynamics , 1986 .

[28]  Gabriel N. Gatica,et al.  A five-field augmented fully-mixed finite element method for the Navier-Stokes/Darcy coupled problem , 2020, Comput. Math. Appl..

[29]  Ricardo Ruiz-Baier,et al.  Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows , 2017, J. Comput. Phys..

[30]  E. Marchandise,et al.  Quality open source mesh generation for biological flow simulations , 2011 .

[31]  Joakim Sundnes,et al.  Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics , 2018, International journal for numerical methods in biomedical engineering.

[32]  Georg Stadler,et al.  Weighted BFBT Preconditioner for Stokes Flow Problems with Highly Heterogeneous Viscosity , 2016, SIAM J. Sci. Comput..

[33]  Alfio Quarteroni,et al.  Numerical Treatment of Defective Boundary Conditions for the Navier-Stokes Equations , 2002, SIAM J. Numer. Anal..

[34]  Lawrence Mitchell,et al.  An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number , 2018, SIAM J. Sci. Comput..

[35]  P. A. Gazca-Orozco,et al.  An augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow , 2020, SIAM J. Sci. Comput..

[36]  HUO-YUAN DUAN,et al.  On the Velocity-Pressure-Vorticity Least-Squares Mixed Finite Element Method for the 3D Stokes Equations , 2003, SIAM J. Numer. Anal..

[38]  M. Alvarez,et al.  A vorticity-based fully-mixed formulation for the 3D Brinkman–Darcy problem , 2016 .

[39]  Ricardo Ruiz-Baier,et al.  Error analysis of an augmented mixed method for the Navier–Stokes problem with mixed boundary conditions , 2018 .

[40]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[41]  F. Dubois,et al.  First vorticity-velocity-pressure numerical scheme for the Stokes problem , 2003 .

[42]  P. Bochev Analysis of Least-Squares Finite Element Methods for the Navier--Stokes Equations , 1997 .

[43]  Martin H. Bloom,et al.  Computers & Fluids: Aims and Objectives , 1973 .

[44]  Suh-Yuh Yang,et al.  ANALYSIS OF THE [L, L, L] LEAST-SQUARES FINITE ELEMENT METHOD FOR INCOMPRESSIBLE OSEEN-TYPE PROBLEMS , 2007 .

[45]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[46]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[47]  Ching L. Chang,et al.  An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for Stokes problem , 1990 .

[48]  Ricardo Ruiz-Baier,et al.  A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem , 2016, Numerische Mathematik.

[49]  Christine Bernardi,et al.  Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem , 2006, SIAM J. Numer. Anal..

[50]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[51]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[52]  Bernardo Cockburn,et al.  An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions , 2012, Math. Comput..

[53]  B. Straughan,et al.  Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.