A Quick Look at the 3 GHz Radio Sky. II. Hunting for DRAGNs in the VLA Sky Survey

Active galactic nuclei (AGNs) can often be identified in radio images as two lobes, sometimes connected to a core by a radio jet. This multicomponent morphology unfortunately creates difficulties for source finders, leading to components that are (a) separate parts of a wider whole, and (b) offset from the multiwavelength cross identification of the host galaxy. In this work we define an algorithm, DRAGNhunter, for identifying double radio sources associated with AGNs (DRAGNs) from component catalog data in the first epoch Quick Look images of the high-resolution (≈3″ beam size) Very Large Array Sky Survey (VLASS). We use DRAGNhunter to construct a catalog of >17,000 DRAGNs in VLASS for which contamination from spurious sources is estimated at ≈11%. A “high-fidelity” sample consisting of 90% of our catalog is identified for which contamination is <3%. Host galaxies are found for ≈13,000 DRAGNs as well as for an additional 234,000 single-component radio sources. Using these data, we explore the properties of our DRAGNs, finding them to be typically consistent with Fanaroff–Riley class II sources and to allow us to report the discovery of 31 new giant radio galaxies identified using VLASS.

[1]  H. Rottgering,et al.  Measuring the giant radio galaxy length distribution with the LoTSS DR2 , 2022, Astronomy &amp; Astrophysics.

[2]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[3]  E. Wilcots,et al.  How Does Environment Affect the Morphology of Radio AGN? , 2022, The Astronomical Journal.

[4]  H. Rottgering,et al.  Cosmic evolution of low-excitation radio galaxies in the LOFAR Two-meter Sky Survey Deep Fields , 2022, 2204.07588.

[5]  A. Hopkins,et al.  Deep ASKAP EMU Survey of the GAMA23 field: Properties of radio sources , 2022, 2203.14727.

[6]  K. Duncan All-purpose, all-sky photometric redshifts for the Legacy Imaging Surveys Data Release 8 , 2022, 2203.01949.

[7]  H. Rottgering,et al.  The discovery of a radio galaxy of at least 5 Mpc , 2022, Astronomy & Astrophysics.

[8]  H. Rottgering,et al.  Deep sub-arcsecond wide-field imaging of the Lockman Hole field at 144 MHz , 2022, Nature Astronomy.

[9]  R. D. Baldi,et al.  Accretion mode versus radio morphology in the LOFAR Deep Fields , 2022, 2201.04433.

[10]  T. J. Dijkema,et al.  The LOFAR Two-metre Sky Survey (LoTSS). V. Second data release , 2022, Astronomy & Astrophysics.

[11]  S. Shabala,et al.  Dynamics of relativistic radio jets in asymmetric environments , 2021, 2110.03162.

[12]  R. Morganti,et al.  Taking snapshots of the jet-ISM interplay: The case of PKS 0023-26 , 2021, Astronomy & Astrophysics.

[13]  T. Murphy,et al.  The Rapid ASKAP Continuum Survey Paper II: First Stokes I Source Catalogue Data Release , 2021, Publications of the Astronomical Society of Australia.

[14]  A. Hopkins,et al.  The Evolutionary Map of the Universe pilot survey , 2021, Publications of the Astronomical Society of Australia.

[15]  H. Andernach,et al.  A Quick Look at the 3 GHz Radio Sky. I. Source Statistics from the Very Large Array Sky Survey , 2021, 2102.11753.

[16]  A. Scaife,et al.  Fanaroff–Riley classification of radio galaxies using group-equivariant convolutional neural networks , 2021, Monthly Notices of the Royal Astronomical Society.

[17]  M. Jamrozy,et al.  Giant Radio Quasars: Sample and Basic Properties , 2020, 2012.08857.

[18]  Michael L. Waskom,et al.  Seaborn: Statistical Data Visualization , 2021, J. Open Source Softw..

[19]  G. Zamorani,et al.  FR-type radio sources at 3 GHz VLA-COSMOS: Relation to physical properties and large-scale environment , 2020, Astronomy & Astrophysics.

[20]  D. J. Saikia,et al.  Compact steep-spectrum and peaked-spectrum radio sources , 2020, 2009.02750.

[21]  X. R. Wang,et al.  Cataloguing the radio-sky with unsupervised machine learning: a new approach for the SKA era , 2020, 2006.14866.

[22]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[23]  D. J. Saikia,et al.  Search and analysis of giant radio galaxies with associated nuclei (SAGAN) , 2020, Astronomy & Astrophysics.

[24]  M. Hardcastle,et al.  Radio galaxies and feedback from AGN jets , 2020, New Astronomy Reviews.

[25]  Jeff Reback,et al.  pandas-dev/pandas: Pandas 1.0.1 , 2020 .

[26]  A. Myers,et al.  The Clustering of DESI-like Luminous Red Galaxies Using Photometric Redshifts , 2020, Monthly Notices of the Royal Astronomical Society.

[27]  N. Żywucka,et al.  Radio Sources Associated with Optical Galaxies and Having Unresolved or Extended Morphologies (ROGUE). I. A Catalog of SDSS Galaxies with FIRST Core Identifications , 2019, The Astrophysical Journal Supplement Series.

[28]  D. A. García-Hernández,et al.  The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra , 2019, The Astrophysical Journal Supplement Series.

[29]  T. Vernstrom,et al.  Unveiling the cause of hybrid morphology radio sources (HyMoRS) , 2019, Monthly Notices of the Royal Astronomical Society.

[30]  I. Szapudi,et al.  PS1-STRM: neural network source classification and photometric redshift catalogue for PS1 3π DR1 , 2019, 1910.10167.

[31]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[32]  H. Rottgering,et al.  Revisiting the Fanaroff–Riley dichotomy and radio-galaxy morphology with the LOFAR Two-Metre Sky Survey (LoTSS) , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  F. Schinzel,et al.  The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design , 2019, Publications of the Astronomical Society of the Pacific.

[34]  T. J. Galvin,et al.  Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-organizing Maps , 2019, Publications of the Astronomical Society of the Pacific.

[35]  R. Morganti,et al.  Giant radio galaxies in the LOFAR Two-metre Sky Survey , 2019, Astronomy & Astrophysics.

[36]  D. Smith,et al.  The LOFAR Two-metre Sky Survey , 2019, Astronomy & Astrophysics.

[37]  A. Edge,et al.  Prevalence of radio jets associated with galactic outflows and feedback from quasars , 2019, Monthly Notices of the Royal Astronomical Society.

[38]  O. I. Wong,et al.  Radio Galaxy Zoo: The Distortion of Radio Galaxies by Galaxy Clusters , 2019, The Astronomical Journal.

[39]  Brett M. Morris,et al.  astroquery: An Astronomical Web-querying Package in Python , 2019, The Astronomical Journal.

[40]  R. Blandford,et al.  Relativistic Jets in Active Galactic Nuclei , 2018, 1812.06025.

[41]  M. Jarvis,et al.  Radio-loud AGN in the first LoTSS data release , 2018, Astronomy & Astrophysics.

[42]  O. I. Wong,et al.  Radio Galaxy Zoo: observational evidence for environment as the cause of radio source asymmetry , 2018, Monthly Notices of the Royal Astronomical Society.

[43]  D. J. Saikia,et al.  An Updated Catalog of Giant Radio Sources , 2018, The Astrophysical Journal Supplement Series.

[44]  Cheng Soon Ong,et al.  Radio Galaxy Zoo:Claran– a deep learning classifier for radio morphologies , 2018, Monthly Notices of the Royal Astronomical Society.

[45]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[46]  M. Huynh,et al.  The XXL Survey: XXXI. Classification and host galaxy properties of 2.1 GHz ATCA XXL-S radio sources , 2018, 1804.05983.

[47]  S. Bamford,et al.  Galaxy And Mass Assembly: The G02 field, Herschel-ATLAS target selection and data release 3 , 2018 .

[48]  J. Smillie,et al.  The WiggleZ Dark Energy Survey: final data release and the metallicity of UV-luminous galaxies , 2018, 1910.08284.

[49]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[50]  H. Rottgering,et al.  LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0 , 2017, 1711.10504.

[51]  R. Norris Extragalactic radio continuum surveys and the transformation of radio astronomy , 2017, 1709.05064.

[52]  P. Padovani On the two main classes of active galactic nuclei , 2017, Nature Astronomy.

[53]  Somak Raychaudhury,et al.  Discovery of giant radio galaxies from NVSS: radio and infrared properties , 2017, 1704.00516.

[54]  D. Frail,et al.  The VLA-COSMOS 3 GHz Large Project: Continuum data and source catalog release , 2017, 1703.09713.

[55]  C. Harrison,et al.  Impact of supermassive black hole growth on star formation , 2017, Nature Astronomy.

[56]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[57]  F. J. Carrera,et al.  The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS , 2016, 1607.06471.

[58]  J. Conway,et al.  LOFAR/H-ATLAS: A deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field , 2016, 1606.09437.

[59]  Alexander S. Szalay,et al.  Photometric redshifts for the SDSS Data Release 12 , 2016, 1603.09708.

[60]  H. Andernach,et al.  Radio Galaxy Zoo : host galaxies and radio morphologies derived from visual inspection , 2015, 1507.07272.

[61]  E. L. Wright,et al.  The Massive and Distant Clusters of WISE Survey. I. Survey Overview and a Catalog of >2000 Galaxy Clusters at z ≃ 1 , 2018, The Astrophysical Journal Supplement Series.

[62]  D. Lang unWISE: UNBLURRED COADDS OF THE WISE IMAGING , 2014, 1405.0308.

[63]  A. Hopkins,et al.  The large area radio galaxy evolution spectroscopic survey (LARGESS) , 2014, 1609.05578.

[64]  Nrao,et al.  Systematic properties of decelerating relativistic jets in low-luminosity radio galaxies , 2013, 1311.1015.

[65]  Dominic J. Benford,et al.  Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.

[66]  M. Jarvis,et al.  The WISE properties of complete samples of radio-loud AGN , 2013, 1308.4843.

[67]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[68]  M. Hardcastle,et al.  Numerical modelling of the lobes of radio galaxies in cluster environments – IV. Remnant radio galaxies , 2013, Monthly Notices of the Royal Astronomical Society.

[69]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[70]  J. Brinchmann,et al.  The triggering probability of radio-loud AGN: A comparison of high and low excitation radio galaxies in hosts of different colors , 2012, 1206.0578.

[71]  S. Maddox,et al.  Herschel-ATLAS: VISTA VIKING near-infrared counterparts in the Phase 1 GAMA 9-h data , 2012, 1202.3891.

[72]  Daniel J. B. Smith,et al.  The likelihood ratio as a tool for radio continuum surveys with Square Kilometre Array precursor telescopes , 2012, 1202.1958.

[73]  T. Heckman,et al.  On the fundamental dichotomy in the local radio-AGN population , 2012, 1201.2397.

[74]  Emilio Falco,et al.  THE 2MASS REDSHIFT SURVEY—DESCRIPTION AND DATA RELEASE , 2011, 1108.0669.

[75]  D. Proctor MORPHOLOGICAL ANNOTATIONS FOR GROUPS IN THE FIRST DATABASE , 2011, 1104.3896.

[76]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[77]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[78]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[79]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[80]  R. Sutherland,et al.  Interaction of jets with the ISM of radio galaxies , 2007, 0707.3669.

[81]  Caltech,et al.  The VLA-COSMOS Survey. II. Source Catalog of the Large Project , 2006, astro-ph/0612314.

[82]  R. Nichol,et al.  Radio galaxies in the 2SLAQ Luminous Red Galaxy Survey - I: The evolution of low-power radio galaxies to z ~ 0.7 , 2006, astro-ph/0612019.

[83]  E. Blackman,et al.  Active galactic nuclei jet mass loading and truncation by stellar winds , 2006, astro-ph/0604585.

[84]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[85]  D. Croton Evolution in the black hole mass–bulge mass relation: a theoretical perspective , 2005, astro-ph/0512375.

[86]  Zeljko Ivezic,et al.  A sample of radio-loud active galactic nuclei in the Sloan Digital Sky Survey , 2005 .

[87]  O. Fèvre,et al.  The VLA-COSMOS Survey. I. Radio Identifications from the Pilot Project , 2004, astro-ph/0408149.

[88]  Matthew Colless,et al.  The 6dF Galaxy Survey: Samples, observational techniques and the first data release , 2004, astro-ph/0403501.

[89]  E. Bell Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.

[90]  C. Blake,et al.  Quantifying angular clustering in wide-area radio surveys , 2002, astro-ph/0208350.

[91]  P. Alexander Evolutionary models for radio sources from compact sources to classical doubles , 2002 .

[92]  H. Rottgering,et al.  A new sample of giant radio galaxies from the WENSS survey - I. Sample definition, selection effects and first results , 2001, astro-ph/0107309.

[93]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[94]  M. Allen,et al.  3C 236: Radio Source, Interrupted? , 2001, astro-ph/0101441.

[95]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[96]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[97]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[98]  R. Becker,et al.  FIRST Bent-Double Radio Sources: Tracers of High-Redshift Clusters , 1999, astro-ph/9910099.

[99]  D. J. Saikia,et al.  Giant radio sources , 1999, astro-ph/9902252.

[100]  K. Blundell,et al.  The Nature and Evolution of Classical Double Radio Sources from Complete Samples , 1998, astro-ph/9810197.

[101]  Ofer Lahav,et al.  Variance and skewness in the FIRST survey , 1998 .

[102]  C. Reynolds,et al.  X-Ray Signatures of Evolving Radio Galaxies , 1998, astro-ph/9801268.

[103]  C. Reynolds,et al.  Intermittent Radio Galaxies and Source Statistics , 1997 .

[104]  Richard L. White,et al.  A Catalog of 1.4 GHz Radio Sources from the FIRST Survey , 1997 .

[105]  S. Rawlings,et al.  Spectrophotometry of a sample of 7C giant radio sources , 1996 .

[106]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[107]  R. Perley,et al.  The jets and hotspots of 3C 390.3 , 1995 .

[108]  R. Becker,et al.  The Angular Two-Point Correlation Function for the FIRST Radio Survey , 1995, astro-ph/9606176.

[109]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[110]  Will Saunders,et al.  On the likelihood ratio for source identification. , 1992 .

[111]  D. Cioffi,et al.  Overpressured cocoons in extragalactic radio sources , 1989 .

[112]  J. Leahy,et al.  A systematic asymmetry in the polarization properties of double radio sources with one jet , 1988, Nature.

[113]  R. Laing The sidedness of jets and depolarization in powerful extragalactic radio sources , 1988, Nature.

[114]  A. Bridle Sidedness, field configuration, and collimation of extragalactic radio jets , 1984 .

[115]  R. Strom,et al.  Giant radio galaxy NGC315 , 1976, Nature.

[116]  Martin J. Rees,et al.  A ‘Twin-Exhaust’ Model for Double Radio Sources , 1974 .

[117]  R. Strom,et al.  3C236, DA240; the largest radio sources known , 1974, Nature.

[118]  F. Jung,et al.  Products , 1968, ADHESION ADHESIVES&SEALANTS.

[119]  P R , 2023 .

[120]  P. Patil,et al.  VLASS Project Memo: 17 Characterization of VLASS Single Epoch Continuum Validation Products , 2022 .

[121]  F. Schinzel,et al.  VLASS Project Memo #13: Pilot and Epoch 1 Quick Look Data Release , 2019 .

[122]  T. J. Dijkema,et al.  Surveys : a new window on the Universe Special issue The LOFAR Two-metre Sky Survey II . First data release ? , ? ? , 2019 .

[123]  M. Hardcastle,et al.  Numerical modelling of the lobes of radio galaxies in cluster environments – II. Magnetic field configuration and observability , 2014 .

[124]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[125]  S. Baum,et al.  Constraints on Radio Source Evolution from the Compact Steep Spectrum and GHz Peaked Spectrum Radio Sources , 1997 .

[126]  G. Miley The structure of extended extragalactic radio sources , 1980 .