A Quick Look at the 3 GHz Radio Sky. II. Hunting for DRAGNs in the VLA Sky Survey
暂无分享,去创建一个
H. Andernach | S. Baum | Y. Gordon | C. O’Dea | B. Mingo | L. Rudnick | E. Hooper | L. Morabito | A. Vantyghem | M. E. Morris | Kaylan-Marie Achong | Caryelis Bayona-Figueroa
[1] H. Rottgering,et al. Measuring the giant radio galaxy length distribution with the LoTSS DR2 , 2022, Astronomy & Astrophysics.
[2] Miguel de Val-Borro,et al. The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.
[3] E. Wilcots,et al. How Does Environment Affect the Morphology of Radio AGN? , 2022, The Astronomical Journal.
[4] H. Rottgering,et al. Cosmic evolution of low-excitation radio galaxies in the LOFAR Two-meter Sky Survey Deep Fields , 2022, 2204.07588.
[5] A. Hopkins,et al. Deep ASKAP EMU Survey of the GAMA23 field: Properties of radio sources , 2022, 2203.14727.
[6] K. Duncan. All-purpose, all-sky photometric redshifts for the Legacy Imaging Surveys Data Release 8 , 2022, 2203.01949.
[7] H. Rottgering,et al. The discovery of a radio galaxy of at least 5 Mpc , 2022, Astronomy & Astrophysics.
[8] H. Rottgering,et al. Deep sub-arcsecond wide-field imaging of the Lockman Hole field at 144 MHz , 2022, Nature Astronomy.
[9] R. D. Baldi,et al. Accretion mode versus radio morphology in the LOFAR Deep Fields , 2022, 2201.04433.
[10] T. J. Dijkema,et al. The LOFAR Two-metre Sky Survey (LoTSS). V. Second data release , 2022, Astronomy & Astrophysics.
[11] S. Shabala,et al. Dynamics of relativistic radio jets in asymmetric environments , 2021, 2110.03162.
[12] R. Morganti,et al. Taking snapshots of the jet-ISM interplay: The case of PKS 0023-26 , 2021, Astronomy & Astrophysics.
[13] T. Murphy,et al. The Rapid ASKAP Continuum Survey Paper II: First Stokes I Source Catalogue Data Release , 2021, Publications of the Astronomical Society of Australia.
[14] A. Hopkins,et al. The Evolutionary Map of the Universe pilot survey , 2021, Publications of the Astronomical Society of Australia.
[15] H. Andernach,et al. A Quick Look at the 3 GHz Radio Sky. I. Source Statistics from the Very Large Array Sky Survey , 2021, 2102.11753.
[16] A. Scaife,et al. Fanaroff–Riley classification of radio galaxies using group-equivariant convolutional neural networks , 2021, Monthly Notices of the Royal Astronomical Society.
[17] M. Jamrozy,et al. Giant Radio Quasars: Sample and Basic Properties , 2020, 2012.08857.
[18] Michael L. Waskom,et al. Seaborn: Statistical Data Visualization , 2021, J. Open Source Softw..
[19] G. Zamorani,et al. FR-type radio sources at 3 GHz VLA-COSMOS: Relation to physical properties and large-scale environment , 2020, Astronomy & Astrophysics.
[20] D. J. Saikia,et al. Compact steep-spectrum and peaked-spectrum radio sources , 2020, 2009.02750.
[21] X. R. Wang,et al. Cataloguing the radio-sky with unsupervised machine learning: a new approach for the SKA era , 2020, 2006.14866.
[22] Jaime Fern'andez del R'io,et al. Array programming with NumPy , 2020, Nature.
[23] D. J. Saikia,et al. Search and analysis of giant radio galaxies with associated nuclei (SAGAN) , 2020, Astronomy & Astrophysics.
[24] M. Hardcastle,et al. Radio galaxies and feedback from AGN jets , 2020, New Astronomy Reviews.
[25] Jeff Reback,et al. pandas-dev/pandas: Pandas 1.0.1 , 2020 .
[26] A. Myers,et al. The Clustering of DESI-like Luminous Red Galaxies Using Photometric Redshifts , 2020, Monthly Notices of the Royal Astronomical Society.
[27] N. Żywucka,et al. Radio Sources Associated with Optical Galaxies and Having Unresolved or Extended Morphologies (ROGUE). I. A Catalog of SDSS Galaxies with FIRST Core Identifications , 2019, The Astrophysical Journal Supplement Series.
[28] D. A. García-Hernández,et al. The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra , 2019, The Astrophysical Journal Supplement Series.
[29] T. Vernstrom,et al. Unveiling the cause of hybrid morphology radio sources (HyMoRS) , 2019, Monthly Notices of the Royal Astronomical Society.
[30] I. Szapudi,et al. PS1-STRM: neural network source classification and photometric redshift catalogue for PS1 3π DR1 , 2019, 1910.10167.
[31] Johannes L. Schönberger,et al. SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.
[32] H. Rottgering,et al. Revisiting the Fanaroff–Riley dichotomy and radio-galaxy morphology with the LOFAR Two-Metre Sky Survey (LoTSS) , 2019, Monthly Notices of the Royal Astronomical Society.
[33] F. Schinzel,et al. The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design , 2019, Publications of the Astronomical Society of the Pacific.
[34] T. J. Galvin,et al. Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-organizing Maps , 2019, Publications of the Astronomical Society of the Pacific.
[35] R. Morganti,et al. Giant radio galaxies in the LOFAR Two-metre Sky Survey , 2019, Astronomy & Astrophysics.
[36] D. Smith,et al. The LOFAR Two-metre Sky Survey , 2019, Astronomy & Astrophysics.
[37] A. Edge,et al. Prevalence of radio jets associated with galactic outflows and feedback from quasars , 2019, Monthly Notices of the Royal Astronomical Society.
[38] O. I. Wong,et al. Radio Galaxy Zoo: The Distortion of Radio Galaxies by Galaxy Clusters , 2019, The Astronomical Journal.
[39] Brett M. Morris,et al. astroquery: An Astronomical Web-querying Package in Python , 2019, The Astronomical Journal.
[40] R. Blandford,et al. Relativistic Jets in Active Galactic Nuclei , 2018, 1812.06025.
[41] M. Jarvis,et al. Radio-loud AGN in the first LoTSS data release , 2018, Astronomy & Astrophysics.
[42] O. I. Wong,et al. Radio Galaxy Zoo: observational evidence for environment as the cause of radio source asymmetry , 2018, Monthly Notices of the Royal Astronomical Society.
[43] D. J. Saikia,et al. An Updated Catalog of Giant Radio Sources , 2018, The Astrophysical Journal Supplement Series.
[44] Cheng Soon Ong,et al. Radio Galaxy Zoo:Claran– a deep learning classifier for radio morphologies , 2018, Monthly Notices of the Royal Astronomical Society.
[45] Adam D. Myers,et al. Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.
[46] M. Huynh,et al. The XXL Survey: XXXI. Classification and host galaxy properties of 2.1 GHz ATCA XXL-S radio sources , 2018, 1804.05983.
[47] S. Bamford,et al. Galaxy And Mass Assembly: The G02 field, Herschel-ATLAS target selection and data release 3 , 2018 .
[48] J. Smillie,et al. The WiggleZ Dark Energy Survey: final data release and the metallicity of UV-luminous galaxies , 2018, 1910.08284.
[49] Miguel de Val-Borro,et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.
[50] H. Rottgering,et al. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0 , 2017, 1711.10504.
[51] R. Norris. Extragalactic radio continuum surveys and the transformation of radio astronomy , 2017, 1709.05064.
[52] P. Padovani. On the two main classes of active galactic nuclei , 2017, Nature Astronomy.
[53] Somak Raychaudhury,et al. Discovery of giant radio galaxies from NVSS: radio and infrared properties , 2017, 1704.00516.
[54] D. Frail,et al. The VLA-COSMOS 3 GHz Large Project: Continuum data and source catalog release , 2017, 1703.09713.
[55] C. Harrison,et al. Impact of supermassive black hole growth on star formation , 2017, Nature Astronomy.
[56] Aniruddha R. Thakar,et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.
[57] F. J. Carrera,et al. The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS , 2016, 1607.06471.
[58] J. Conway,et al. LOFAR/H-ATLAS: A deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field , 2016, 1606.09437.
[59] Alexander S. Szalay,et al. Photometric redshifts for the SDSS Data Release 12 , 2016, 1603.09708.
[60] H. Andernach,et al. Radio Galaxy Zoo : host galaxies and radio morphologies derived from visual inspection , 2015, 1507.07272.
[61] E. L. Wright,et al. The Massive and Distant Clusters of WISE Survey. I. Survey Overview and a Catalog of >2000 Galaxy Clusters at z ≃ 1 , 2018, The Astrophysical Journal Supplement Series.
[62] D. Lang. unWISE: UNBLURRED COADDS OF THE WISE IMAGING , 2014, 1405.0308.
[63] A. Hopkins,et al. The large area radio galaxy evolution spectroscopic survey (LARGESS) , 2014, 1609.05578.
[64] Nrao,et al. Systematic properties of decelerating relativistic jets in low-luminosity radio galaxies , 2013, 1311.1015.
[65] Dominic J. Benford,et al. Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.
[66] M. Jarvis,et al. The WISE properties of complete samples of radio-loud AGN , 2013, 1308.4843.
[67] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[68] M. Hardcastle,et al. Numerical modelling of the lobes of radio galaxies in cluster environments – IV. Remnant radio galaxies , 2013, Monthly Notices of the Royal Astronomical Society.
[69] T. Robitaille,et al. APLpy: Astronomical Plotting Library in Python , 2012 .
[70] J. Brinchmann,et al. The triggering probability of radio-loud AGN: A comparison of high and low excitation radio galaxies in hosts of different colors , 2012, 1206.0578.
[71] S. Maddox,et al. Herschel-ATLAS: VISTA VIKING near-infrared counterparts in the Phase 1 GAMA 9-h data , 2012, 1202.3891.
[72] Daniel J. B. Smith,et al. The likelihood ratio as a tool for radio continuum surveys with Square Kilometre Array precursor telescopes , 2012, 1202.1958.
[73] T. Heckman,et al. On the fundamental dichotomy in the local radio-AGN population , 2012, 1201.2397.
[74] Emilio Falco,et al. THE 2MASS REDSHIFT SURVEY—DESCRIPTION AND DATA RELEASE , 2011, 1108.0669.
[75] D. Proctor. MORPHOLOGICAL ANNOTATIONS FOR GROUPS IN THE FIRST DATABASE , 2011, 1104.3896.
[76] S. Bamford,et al. Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.
[77] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[78] Karl Glazebrook,et al. The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.
[79] B. Skiff,et al. VizieR Online Data Catalog , 2009 .
[80] R. Sutherland,et al. Interaction of jets with the ISM of radio galaxies , 2007, 0707.3669.
[81] Caltech,et al. The VLA-COSMOS Survey. II. Source Catalog of the Large Project , 2006, astro-ph/0612314.
[82] R. Nichol,et al. Radio galaxies in the 2SLAQ Luminous Red Galaxy Survey - I: The evolution of low-power radio galaxies to z ~ 0.7 , 2006, astro-ph/0612019.
[83] E. Blackman,et al. Active galactic nuclei jet mass loading and truncation by stellar winds , 2006, astro-ph/0604585.
[84] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[85] D. Croton. Evolution in the black hole mass–bulge mass relation: a theoretical perspective , 2005, astro-ph/0512375.
[86] Zeljko Ivezic,et al. A sample of radio-loud active galactic nuclei in the Sloan Digital Sky Survey , 2005 .
[87] O. Fèvre,et al. The VLA-COSMOS Survey. I. Radio Identifications from the Pilot Project , 2004, astro-ph/0408149.
[88] Matthew Colless,et al. The 6dF Galaxy Survey: Samples, observational techniques and the first data release , 2004, astro-ph/0403501.
[89] E. Bell. Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.
[90] C. Blake,et al. Quantifying angular clustering in wide-area radio surveys , 2002, astro-ph/0208350.
[91] P. Alexander. Evolutionary models for radio sources from compact sources to classical doubles , 2002 .
[92] H. Rottgering,et al. A new sample of giant radio galaxies from the WENSS survey - I. Sample definition, selection effects and first results , 2001, astro-ph/0107309.
[93] S.Cole,et al. The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.
[94] M. Allen,et al. 3C 236: Radio Source, Interrupted? , 2001, astro-ph/0101441.
[95] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[96] D. Merritt,et al. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.
[97] F. Ochsenbein,et al. The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.
[98] R. Becker,et al. FIRST Bent-Double Radio Sources: Tracers of High-Redshift Clusters , 1999, astro-ph/9910099.
[99] D. J. Saikia,et al. Giant radio sources , 1999, astro-ph/9902252.
[100] K. Blundell,et al. The Nature and Evolution of Classical Double Radio Sources from Complete Samples , 1998, astro-ph/9810197.
[101] Ofer Lahav,et al. Variance and skewness in the FIRST survey , 1998 .
[102] C. Reynolds,et al. X-Ray Signatures of Evolving Radio Galaxies , 1998, astro-ph/9801268.
[103] C. Reynolds,et al. Intermittent Radio Galaxies and Source Statistics , 1997 .
[104] Richard L. White,et al. A Catalog of 1.4 GHz Radio Sources from the FIRST Survey , 1997 .
[105] S. Rawlings,et al. Spectrophotometry of a sample of 7C giant radio sources , 1996 .
[106] E. Greisen,et al. The NRAO VLA Sky Survey , 1996 .
[107] R. Perley,et al. The jets and hotspots of 3C 390.3 , 1995 .
[108] R. Becker,et al. The Angular Two-Point Correlation Function for the FIRST Radio Survey , 1995, astro-ph/9606176.
[109] Richard L. White,et al. The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .
[110] Will Saunders,et al. On the likelihood ratio for source identification. , 1992 .
[111] D. Cioffi,et al. Overpressured cocoons in extragalactic radio sources , 1989 .
[112] J. Leahy,et al. A systematic asymmetry in the polarization properties of double radio sources with one jet , 1988, Nature.
[113] R. Laing. The sidedness of jets and depolarization in powerful extragalactic radio sources , 1988, Nature.
[114] A. Bridle. Sidedness, field configuration, and collimation of extragalactic radio jets , 1984 .
[115] R. Strom,et al. Giant radio galaxy NGC315 , 1976, Nature.
[116] Martin J. Rees,et al. A ‘Twin-Exhaust’ Model for Double Radio Sources , 1974 .
[117] R. Strom,et al. 3C236, DA240; the largest radio sources known , 1974, Nature.
[118] F. Jung,et al. Products , 1968, ADHESION ADHESIVES&SEALANTS.
[119] P R , 2023 .
[120] P. Patil,et al. VLASS Project Memo: 17 Characterization of VLASS Single Epoch Continuum Validation Products , 2022 .
[121] F. Schinzel,et al. VLASS Project Memo #13: Pilot and Epoch 1 Quick Look Data Release , 2019 .
[122] T. J. Dijkema,et al. Surveys : a new window on the Universe Special issue The LOFAR Two-metre Sky Survey II . First data release ? , ? ? , 2019 .
[123] M. Hardcastle,et al. Numerical modelling of the lobes of radio galaxies in cluster environments – II. Magnetic field configuration and observability , 2014 .
[124] Jean-Luc Starck,et al. Astronomical Data Analysis , 2007 .
[125] S. Baum,et al. Constraints on Radio Source Evolution from the Compact Steep Spectrum and GHz Peaked Spectrum Radio Sources , 1997 .
[126] G. Miley. The structure of extended extragalactic radio sources , 1980 .