Effect of autosomally inherited, incompletely dominant, and unstable spinosad resistance on physiology of Tribolium castaneum (Coleoptera: Tenebrionidae): Realized heritability and cross-resistance

[1]  S. Abdelgaleil,et al.  Potential of low application rate combinations of three chitin synthesis inhibitor insecticides with spinosad for the control of Sitophilus oryzae on stored wheat , 2022, Journal of Stored Products Research.

[2]  R. Wilkins,et al.  Fitness in a malathion resistant Tribolium castaneum strain; feeding, growth and digestion , 2021 .

[3]  N. Abbas,et al.  Risk Assessment of Flonicamid Resistance in Musca domestica (Diptera: Muscidae): Resistance Monitoring, Inheritance, and Cross-Resistance Potential , 2021, Journal of Medical Entomology.

[4]  S. A. Shad,et al.  Inheritance, stability, cross-resistance, and life history parameters of a clothianidin-selected strain of house fly, Musca domestica Linnaeus. , 2021, Environmental pollution.

[5]  Muhammad Yasir,et al.  Evaluation of Spinosad Applied to Grain Commodities for the Control of Stored Product Insect Pests , 2021 .

[6]  H. El-Shafie,et al.  Design and efficacy evaluation of a modern automated controlled atmosphere system for pest management in stored dates , 2020 .

[7]  N. Papanikolaou,et al.  Exposure of Tribolium castaneum (Herbst) females to pirimiphos-methyl alters the fitness of their progeny , 2020, Environmental Science and Pollution Research.

[8]  G. Sarwar,et al.  Extent and pattern of damage in wheat caused by three different species of storage insect pests , 2020 .

[9]  Mahmoud S Hassan Joint Action of Spinosad and Sweet Almond Oil Mixture against the Saw Toothed Grain Beetle, Oryzaephilus surinamensis (L.) , 2020 .

[10]  L. Wijayaratne,et al.  Effects of spinosad and spinetoram on larval mortality, adult emergence, progeny production and mating in Cadra cautella (Walk.) (Lepidoptera: Pyralidae) , 2020 .

[11]  R. Aulický,et al.  Frass produced by the primary pest Rhyzopertha dominica supports the population growth of the secondary stored product pests Oryzaephilus surinamensis, Tribolium castaneum, and T. confusum , 2020, Bulletin of Entomological Research.

[12]  N. Papanikolaou,et al.  How Is Fitness of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) Affected When Different Developmental Stages Are Exposed to Chlorfenapyr? , 2020, Insects.

[13]  E. Oyewo,et al.  Aspects of the biology of Ephestia cautella and Tribolium castaneum on fermented stored cocoa beans , 2020 .

[14]  Mehboob Alam,et al.  Fitness cost, realized heritability and stability of resistance to spiromesifen in house fly, Musca domestica L. (Diptera: Muscidae). , 2020, Pesticide biochemistry and physiology.

[15]  S. A. Shad,et al.  Laboratory induced bifenthrin resistance selection in Oxycarenus hyalinipennis (Costa) (Hemiptera: Lygaeidae): Stability, cross-resistance, dominance and effects on biological fitness , 2020 .

[16]  N. Shah,et al.  Disinfestation of red flour beetle (Tribolium castaneum) present in almonds (Prunus dulcis) using microwave heating and evaluation of quality and shelf life of almonds , 2020 .

[17]  K. Siliveru,et al.  Development of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) on sorghum milling fractions , 2020 .

[18]  W. Mu,et al.  Effects of benzothiazole on survival for reduced reproduction and development in Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). , 2020, Pest management science.

[19]  M. El-Naggar,et al.  Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest , 2020, Nanomaterials.

[20]  A. Meneses,et al.  Achados hematológicos em Iguana iguana (Reptilia, Squamata, Iguanidae) com hemoparasitose em Santarém, Pará, Brasil , 2020 .

[21]  V. Babu,et al.  Role of novel insecticides in crop protection and their selectivity to natural enemies: A review , 2020 .

[22]  L. Wijayaratne,et al.  Response of different population sizes to traps and effect of spinosad on the trap catch and progeny adult emergence in Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) , 2020 .

[23]  V. Ninkovic,et al.  Behavioural responses of Tribolium castaneum (Herbst) to different types of uninfested and infested feed , 2020, Bulletin of Entomological Research.

[24]  P. Batterham,et al.  Functional characterization and fitness cost of spinosad-resistant alleles in Ceratitis capitata , 2020, Journal of Pest Science.

[25]  Sadek Jafar Tuama,et al.  Effect of Tribolium castaneum in Qualitative and Quantitative Contamination with Fungi , 2020 .

[26]  Muhammad Musa Khan,et al.  Effect of different biopesticides on mortality and their synergetic effect on the fecundity of Tribolium castaneum (Herbst, 1797) , 2020 .

[27]  Sunil Kumar,et al.  Major insects of stored food grains , 2020 .

[28]  A. Mukherjee,et al.  Nanoemulsion of eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice , 2020 .

[29]  S. A. Shad,et al.  House fly resistance to chlorantraniliprole: Cross resistance patterns, stability and associated fitness costs. , 2019, Pest management science.

[30]  Abhinav Tiwari,et al.  Comparative laboratory efficacy of novel botanical-extracts against Tribolium castaneum. , 2019, Journal of the science of food and agriculture.

[31]  S. A. Shad,et al.  Spinosad resistance selected in the laboratory strain of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae): studies on risk assessment and cross-resistance patterns , 2019, Phytoparasitica.

[32]  L. Faroni,et al.  Biological and Reproductive Parameters of Tribolium castaneum in Brazil Nut , 2019, Florida Entomologist.

[33]  R. Guedes,et al.  Diversity and convergence of mechanisms involved in pyrethroid resistance in the stored grain weevils, Sitophilus spp. , 2018, Scientific Reports.

[34]  B. Bhushan,et al.  Red flour beetle (Tribolium castaneum): From population genetics to functional genomics , 2018, Veterinary world.

[35]  H. Qiu,et al.  Resistance development, stability, cross-resistance potential, biological fitness and biochemical mechanisms of spinetoram resistance in Thrips hawaiiensis (Thysanoptera: Thripidae). , 2018, Pest management science.

[36]  Hang-Tang Wang,et al.  Nicotinic acetylcholine receptor subunit α6 associated with spinosad resistance in Rhyzopertha dominica (Coleoptera: Bostrichidae). , 2018, Pesticide biochemistry and physiology.

[37]  D. Okuma,et al.  Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. , 2018, Pest management science.

[38]  K. Rehman,et al.  Monitoring Susceptibility to Spinosad in Three Major Stored-Product Insect Species from Punjab, Pakistan , 2018 .

[39]  M. Azab Bioactivity and stability of spinetoram and spinosad on stored wheat as determined by adults of Rhyzopertha dominica (Coleoptera: Bostrichidae) bioassay , 2017 .

[40]  N. Abbas,et al.  Genetics, realized heritability and preliminary mechanism of spinosad resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae): an invasive pest from Pakistan , 2015, Genetica.

[41]  N. Abbas,et al.  Mechanism, stability and fitness cost of resistance to pyriproxyfen in the house fly, Musca domestica L. (Diptera: Muscidae). , 2015, Pesticide biochemistry and physiology.

[42]  Guonian Zhu,et al.  Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum) , 2015, International journal of molecular sciences.

[43]  G. Daglish,et al.  Phosphine resistance in Sitophilus oryzae (L.) from eastern Australia: Inheritance, fitness and prevalence , 2014 .

[44]  M. Cheng,et al.  Laboratory Selection of Resistance to Spinosad in Culex quinquefasciatus (Diptera: Culicidae) , 2014, Journal of medical entomology.

[45]  S. Freed,et al.  Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) , 2014 .

[46]  W. Akram,et al.  Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). , 2014, Acta tropica.

[47]  N. Abbas,et al.  Effect of emamectin benzoate on life history traits and relative fitness of Spodoptera litura (Lepidoptera: Noctuidae) , 2014, Phytoparasitica.

[48]  P. Ebert,et al.  Phosphine Resistance in the Rust Red Flour Beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): Inheritance, Gene Interactions and Fitness Costs , 2012, PloS one.

[49]  G. B. Watson,et al.  Resistance and cross-resistance to the spinosyns – A review and analysis , 2012 .

[50]  A. Shakoori,et al.  Toxicological and biochemical studies on spinosad and synergism with piperonyl butoxide in susceptible and resistant strains of Tribolium castaneum. , 2012 .

[51]  M. Kristensen,et al.  Spinosad resistance in female Musca domestica L. from a field-derived population. , 2012, Pest management science.

[52]  Xiwu Gao,et al.  Characterisation of spinosad resistance in the housefly Musca domestica (Diptera: Muscidae). , 2011, Pest management science.

[53]  Hongyan Wang,et al.  Reduced fitness associated with spinosad resistance in Helicoverpa armigera , 2010, Phytoparasitica.

[54]  D. Wool,et al.  Genetic and ecological properties of malathion resistance in a “field” strain of the flour beetle, tribolium castaneum (tenebrionidae, coleoptera) , 2009 .

[55]  Susan J. Brown,et al.  The red flour beetle, Tribolium castaneum (Coleoptera): a model for studies of development and pest biology. , 2009, Cold Spring Harbor protocols.

[56]  P. Bielza,et al.  Inheritance of resistance to acrinathrin in Frankliniella occidentalis (Thysanoptera: Thripidae). , 2008, Pest management science.

[57]  C. Athanassiou,et al.  Effectiveness of spinosad dust against different European populations of the confused flour beetle, Tribolium confusum Jacquelin du Val , 2008 .

[58]  Munir Ahmad,et al.  Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan , 2007 .

[59]  E. Haubruge,et al.  Response and genetic analysis of malathion-specific resistant Tribolium castaneum (Herbst) in relation to population density , 2007 .

[60]  Zhaojun Han,et al.  Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost. , 2006, Pest management science.

[61]  Zewen Liu,et al.  Fitness costs of laboratory-selected imidacloprid resistance in the brown planthopper, Nilaparvata lugens Stål. , 2006, Pest management science.

[62]  J. Myers,et al.  The cost of resistance to Bacillus thuringiensis varies with the host plant of Trichoplusia ni , 2005, Proceedings of the Royal Society B: Biological Sciences.

[63]  G. Daglish,et al.  Effectiveness of spinosad as a grain protectant against resistant beetle and psocid pests of stored grain in Australia , 2005 .

[64]  T. Shono,et al.  Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome 1 , 2003 .

[65]  L. Arnaud,et al.  Increased fecundity of malathion-specific resistant beetles in absence of insecticide pressure , 2002, Heredity.

[66]  E. Donahaye Current status of non-residual control methods against stored product pests. , 2000 .

[67]  J. Throne,et al.  Fitness costs of resistance to Bacillus thuringiensis in the Indianmeal moth, Plodia interpunctella , 2000 .

[68]  I. Lorini,et al.  Estimation of realized heritability of resistance to deltamethrin insecticide in selected strains of Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) , 2000 .

[69]  P. Collins Inheritance of resistance to pyrethroid insecticides in Tribolium castaneum (Herbst) , 1998 .

[70]  M. Raymond,et al.  The molecular basis of dominance relationships: the case of some recent adaptive genes , 1998 .

[71]  B. Tabashnik,et al.  Evolution of Resistance to Bacillus Thuringiensis , 1994 .

[72]  B. Tabashnik Resistance Risk Assessment: Realized Heritability of Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae), Tobacco Budworm (Lepidoptera: Noctuidae), and Colorado Potato Beetle (Coleoptera: Chrysomelidae) , 1992 .

[73]  J. G. Scott Investigating Mechanisms of Insecticide Resistance: Methods, Strategies, and Pitfalls , 1990 .

[74]  J. Kumar,et al.  Inheritance of resistance to lindane in a laboratory-selected strain of Tribolium castaneum (Herbst)† , 1982 .

[75]  R. Roush,et al.  Effects of insecticide resistance on biotic potential of the house fly (Diptera: Muscidae). , 1982, Journal of economic entomology.

[76]  P. J. Radford,et al.  Growth Analysis Formulae - Their Use and Abuse 1 , 1967 .

[77]  F. Wilcoxon,et al.  A simplified method of evaluating dose-effect experiments. , 1948, The Journal of pharmacology and experimental therapeutics.