Random matrix theory in statistics: A review

[1]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[2]  M. Pourahmadi,et al.  BANDING SAMPLE AUTOCOVARIANCE MATRICES OF STATIONARY PROCESSES , 2009 .

[3]  Boaz Nadler,et al.  On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix , 2011, J. Multivar. Anal..

[4]  F. Götze,et al.  Rate of convergence in probability to the Marchenko-Pastur law , 2004 .

[5]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[6]  Y. Yin Limiting spectral distribution for a class of random matrices , 1986 .

[7]  Jianfeng Yao,et al.  On the convergence of the spectral empirical process of Wigner matrices , 2005 .

[8]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[9]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[10]  Jianfeng Yao,et al.  A note on a Marčenko–Pastur type theorem for time series , 2011, 1109.1612.

[11]  Tiefeng Jiang,et al.  The limiting distributions of eigenvalues of sample correlation matrices , 2004 .

[12]  T. Cai,et al.  Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.

[13]  Alexander Soshnikov Gaussian limit for determinantal random point fields , 2000 .

[14]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[15]  I. Johnstone MULTIVARIATE ANALYSIS AND JACOBI ENSEMBLES: LARGEST EIGENVALUE, TRACY-WIDOM LIMITS AND RATES OF CONVERGENCE. , 2008, Annals of statistics.

[16]  T. Tao,et al.  A central limit theorem for the determinant of a Wigner matrix , 2011, 1111.6300.

[17]  Noureddine El Karoui,et al.  Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.

[18]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[19]  Z. Bai,et al.  Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part II. Sample Covariance Matrices , 1993 .

[20]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[21]  N. O'Connell,et al.  PATTERNS IN EIGENVALUES: THE 70TH JOSIAH WILLARD GIBBS LECTURE , 2003 .

[22]  Weidong Liu,et al.  Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.

[23]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[24]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[25]  Mérouane Debbah,et al.  Eigen-Inference for Energy Estimation of Multiple Sources , 2010, IEEE Transactions on Information Theory.

[26]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[27]  Harrison H. Zhou,et al.  MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER ℓ1-NORM , 2012 .

[28]  Harrison H. Zhou,et al.  Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.

[29]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[30]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[31]  Boris A. Khoruzhenko,et al.  Asymptotic properties of large random matrices with independent entries , 1996 .

[32]  Jianqing Fan,et al.  High Dimensional Classification Using Features Annealed Independence Rules. , 2007, Annals of statistics.

[33]  Michael Wolf,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011 .

[34]  Olivier Ledoit,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.

[35]  Roland Speicher,et al.  Second order freeness and fluctuations of random matrices: I. Gaussian and Wishart matrices and cyclic Fock spaces , 2004, math/0405191.

[36]  Ohad N. Feldheim,et al.  A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.

[37]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[38]  K. Wachter The Limiting Empirical Measure of Multiple Discriminant Ratios , 1980 .

[39]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[40]  Harold Widom,et al.  On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles , 1999 .

[41]  L. R. Haff Minimax estimators for a multinormal precision matrix , 1977 .

[42]  J. W. Silverstein,et al.  Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.

[43]  Trevor J. Hastie,et al.  Sparse Discriminant Analysis , 2011, Technometrics.

[44]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[45]  Walid Hachem,et al.  On the isolated eigenvalues of large Gram random matrices with a fixed rank deformation , 2012 .

[46]  M. Hallin,et al.  The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.

[47]  Raj Rao Nadakuditi,et al.  Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples , 2009, IEEE Journal of Selected Topics in Signal Processing.

[48]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[49]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[50]  J. W. Silverstein,et al.  Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices , 2005 .

[51]  Zhidong Bai,et al.  LARGE SAMPLE COVARIANCE MATRICES WITHOUT INDEPENDENCE STRUCTURES IN COLUMNS , 2008 .

[52]  Zongming Ma,et al.  FAST APPROACH TO THE TRACY-WIDOM LAW AT THE EDGE OF GOE AND GUE. , 2011, The annals of applied probability : an official journal of the Institute of Mathematical Statistics.

[53]  J. Shao,et al.  Sparse linear discriminant analysis by thresholding for high dimensional data , 2011, 1105.3561.

[54]  Zhidong Bai,et al.  CONVERGENCE RATE OF EXPECTED SPECTRAL DISTRIBUTIONS OF LARGE RANDOM MATRICES PART II: SAMPLE COVARIANCE MATRICES , 2008 .

[55]  Lebowitz,et al.  Gaussian fluctuation in random matrices. , 1994, Physical review letters.

[56]  Zhidong Bai,et al.  NO EIGENVALUES OUTSIDE THE SUPPORT OF THE LIMITING SPECTRAL DISTRIBUTION OF INFORMATION-PLUS-NOISE TYPE MATRICES , 2012 .

[57]  Pei Wang,et al.  Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.

[58]  Franklin A. Graybill,et al.  An Analysis of a Two-Way Model with Interaction and No Replication , 1972 .

[59]  Yanrong Yang,et al.  The convergence of the empirical distribution of canonical correlation coefficients , 2012 .

[60]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[61]  I. Jolliffe Principal Component Analysis , 2002 .

[62]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[63]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[64]  A. Edelman,et al.  From Random Matrices to Stochastic Operators , 2006, math-ph/0607038.

[65]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[66]  Cheng Wang,et al.  Limiting spectral distribution of large-dimensional sample covariance matrices generated by VARMA , 2009, J. Multivar. Anal..

[67]  O. Zeitouni,et al.  A CLT for a band matrix model , 2004, math/0412040.

[68]  J. Nadal,et al.  Optimal unsupervised learning , 1994 .

[69]  Shurong Zheng,et al.  Central limit theorems for linear spectral statistics of large dimensional F-matrices , 2012 .

[70]  Oliver Pfaffel,et al.  Eigenvalue distribution of large sample covariance matrices of linear processes , 2012, 1201.3828.

[71]  M. Ledoux The concentration of measure phenomenon , 2001 .

[72]  M. Srivastava,et al.  A test for the mean vector with fewer observations than the dimension , 2008 .

[73]  Arup Bose,et al.  Another look at the moment method for large dimensional random matrices , 2008 .

[74]  Jun Yin,et al.  The Isotropic Semicircle Law and Deformation of Wigner Matrices , 2011, 1110.6449.

[75]  Noureddine El Karoui,et al.  The spectrum of kernel random matrices , 2010, 1001.0492.

[76]  S. Péché,et al.  Eigenvectors of some large sample covariance matrix ensembles , 2009 .

[77]  T. Cai,et al.  Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices , 2011, 1102.2925.

[78]  Sean O'Rourke,et al.  Fluctuations of Matrix Entries of Regular Functions of Sample Covariance Random Matrices , 2011 .

[79]  Z. Bao Strong convergence of ESD for the generalized sample covariance matrices when p/n→0 , 2012 .

[80]  T. Tao,et al.  Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.

[81]  J. W. Silverstein The Limiting Eigenvalue Distribution of a Multivariate F Matrix , 1985 .

[82]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[83]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[84]  J. Baik,et al.  The Oxford Handbook of Random Matrix Theory , 2011 .

[85]  M. Yuan,et al.  Adaptive covariance matrix estimation through block thresholding , 2012, 1211.0459.

[86]  Olivier Ledoit,et al.  Eigenvectors of some large sample covariance matrix ensembles , 2009, 0911.3010.

[87]  I. Johnstone,et al.  Augmented sparse principal component analysis for high dimensional data , 2012, 1202.1242.

[88]  Z. Bai,et al.  Convergence to the Semicircle Law , 1988 .

[89]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[90]  D. Dey,et al.  Trimmed minimax estimator of a covariance matrix , 1986 .

[91]  T. H. Baker,et al.  Random matrix ensembles with an effective extensive external charge , 1998 .

[92]  A. Onatski Determining the Number of Factors from Empirical Distribution of Eigenvalues , 2010, The Review of Economics and Statistics.

[93]  Jun Yin,et al.  The outliers of a deformed Wigner matrix , 2012, 1207.5619.

[94]  S. Sodin Random matrices, nonbacktracking walks, and orthogonal polynomials , 2007, math-ph/0703043.

[95]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[96]  Huixia Liu,et al.  On the Markowitz Mean-Variance Analysis of Self-Financing Portfolios , 2016, Risk Decis. Anal..

[97]  Jonas Gustavsson Gaussian fluctuations of eigenvalues in the GUE , 2004 .

[98]  Romain Couillet,et al.  Robust M-Estimation for Array Processing: A Random Matrix Approach , 2012, ArXiv.

[99]  James O. Ramsay,et al.  Principal components analysis for functional data , 1997 .

[100]  Zongming Ma Sparse Principal Component Analysis and Iterative Thresholding , 2011, 1112.2432.

[101]  Noureddine El Karoui,et al.  On the Realized Risk of High-Dimensional Markowitz Portfolios , 2013, SIAM J. Financial Math..

[102]  W. Hachem,et al.  Deterministic equivalents for certain functionals of large random matrices , 2005, math/0507172.

[103]  S. Péché,et al.  Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .

[104]  H. Yau,et al.  Universality of local spectral statistics of random matrices , 2011, 1106.4986.

[105]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[106]  Z. D. Bai,et al.  Semicircle Law for Hadamard Products , 2007, SIAM J. Matrix Anal. Appl..

[107]  Alexander Soshnikov,et al.  Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles , 2006 .

[108]  Mérouane Debbah,et al.  Random Matrix Methods for Wireless Communications: Applications to wireless communications , 2011 .

[109]  S. Péché,et al.  On the lower bound of the spectral norm of symmetric random matrices with independent entries , 2007, 0706.0748.

[110]  Martin J. Wainwright,et al.  A More Powerful Two-Sample Test in High Dimensions using Random Projection , 2011, NIPS.

[111]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[112]  Antonio Auffinger,et al.  Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.

[113]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[114]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[115]  T. Tao Topics in Random Matrix Theory , 2012 .

[116]  Mariya Shcherbina,et al.  Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices , 2011, 1101.3249.

[117]  K. Wachter The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .

[118]  Debashis Paul,et al.  No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix , 2009, J. Multivar. Anal..

[119]  Noureddine El Karoui,et al.  Concentration of measure and spectra of random matrices: Applications to correlation matrices, elliptical distributions and beyond , 2009, 0912.1950.

[120]  Jian-Feng Yao,et al.  Convergence Rates of Spectral Distributions of Large Sample Covariance Matrices , 2003, SIAM J. Matrix Anal. Appl..

[121]  H. Markowitz The optimization of a quadratic function subject to linear constraints , 1956 .

[122]  I. Johnstone,et al.  On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.

[123]  Theodore P. Hill,et al.  Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform , 2003, J. Approx. Theory.

[124]  S. Chatterjee A generalization of the Lindeberg principle , 2005, math/0508519.

[125]  P. Deift,et al.  Random Matrix Theory: Invariant Ensembles and Universality , 2009 .

[126]  Zhidong Bai,et al.  A note on the convergence rate of the spectral distributions of large random matrices , 1997 .

[127]  A. Soshnikov,et al.  ON FINITE RANK DEFORMATIONS OF WIGNER MATRICES II: DELOCALIZED PERTURBATIONS , 2012, 1203.5130.

[128]  Patrick L. Combettes,et al.  Signal detection via spectral theory of large dimensional random matrices , 1992, IEEE Trans. Signal Process..

[129]  Zhidong Bai,et al.  On limit theorem for the eigenvalues of product of two random matrices , 2007 .

[130]  Bin Yu,et al.  Spectral clustering and the high-dimensional stochastic blockmodel , 2010, 1007.1684.

[131]  Asymptotic Distribution of the Smallest Eigenvalue of Wishart(N, n) When N, n → ∞ Such That N/n → 0 , 2011 .

[132]  D. Dey,et al.  Estimation of a covariance matrix under Stein's loss , 1985 .

[133]  L. Pastur,et al.  Non-Gaussian Limiting Laws for the Entries of Regular Functions of the Wigner Matrices , 2011, 1103.2345.

[134]  Tiefeng Jiang,et al.  Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles , 2009 .

[135]  Marco Lippi,et al.  The generalized dynamic factor model: consistency and rates , 2004 .

[136]  Z. Bai,et al.  CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.

[137]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[138]  L. R. Haff Empirical Bayes Estimation of the Multivariate Normal Covariance Matrix , 1980 .

[139]  Tiefeng Jiang,et al.  Low eigenvalues of Laplacian matrices of large random graphs , 2012 .

[140]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[141]  Wei-Liem Loh Estimating Covariance Matrices , 1991 .

[142]  B. Nadler Finite sample approximation results for principal component analysis: a matrix perturbation approach , 2009, 0901.3245.

[143]  I. Johnstone High Dimensional Statistical Inference and Random Matrices , 2006, math/0611589.

[144]  R. Tibshirani,et al.  Covariance‐regularized regression and classification for high dimensional problems , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[145]  Zongming Ma,et al.  Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices , 2012, 1203.0839.

[146]  R. Tibshirani,et al.  Penalized classification using Fisher's linear discriminant , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[147]  R. Vershynin Spectral norm of products of random and deterministic matrices , 2008, 0812.2432.

[148]  John Shawe-Taylor,et al.  Sparse canonical correlation analysis , 2009, Machine Learning.

[149]  D. Tritchler,et al.  Sparse Canonical Correlation Analysis with Application to Genomic Data Integration , 2009, Statistical applications in genetics and molecular biology.

[150]  Zhidong Bai,et al.  Functional CLT for sample covariance matrices , 2010, 1011.5729.

[151]  Noureddine El Karoui On the largest eigenvalue of Wishart matrices with identity covariance when n, p and p/n tend to infinity , 2003, math/0309355.

[152]  J. Ramírez,et al.  Beta ensembles, stochastic Airy spectrum, and a diffusion , 2006, math/0607331.

[153]  Gabriel Frahm,et al.  Random matrix theory and robust covariance matrix estimation for financial data , 2005, physics/0503007.

[154]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[155]  Serena Ng,et al.  Determining the Number of Primitive Shocks in Factor Models , 2007 .

[156]  B. Nadler,et al.  Determining the number of components in a factor model from limited noisy data , 2008 .

[157]  A. Onatski TESTING HYPOTHESES ABOUT THE NUMBER OF FACTORS IN LARGE FACTOR MODELS , 2009 .

[158]  David Renfrew,et al.  Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices , 2011, 1103.1170.

[159]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[160]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[161]  Noureddine El Karoui,et al.  High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: Risk underestimation , 2010, 1211.2917.

[162]  Matthew Harding,et al.  Explaining the single factor bias of arbitrage pricing models in finite samples , 2008 .

[163]  Noureddine El Karoui Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.

[164]  Alice Guionnet,et al.  Large Random Matrices: Lectures on Macroscopic Asymptotics , 2009 .

[165]  Sourav Chatterjee,et al.  Fluctuations of eigenvalues and second order Poincaré inequalities , 2007, 0705.1224.

[166]  S. Péché,et al.  Bulk universality for Wigner matrices , 2009, 0905.4176.

[167]  Z. Bai,et al.  Corrections to LRT on large-dimensional covariance matrix by RMT , 2009, 0902.0552.

[168]  R. Speicher,et al.  Lectures on the Combinatorics of Free Probability: The free commutator , 2006 .

[169]  Ke Wang RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES UP TO THE EDGE , 2011, 1104.4832.

[170]  Z. Bai,et al.  Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices , 1993 .

[171]  T. Tao,et al.  Random matrices: Sharp concentration of eigenvalues , 2012, 1201.4789.

[172]  B. Nadler,et al.  MINIMAX BOUNDS FOR SPARSE PCA WITH NOISY HIGH-DIMENSIONAL DATA. , 2012, Annals of statistics.

[173]  Bahcall Random Matrix Model for Superconductors in a Magnetic Field. , 1996, Physical review letters.

[174]  Jiti Gao,et al.  Asymptotic Theory for Sample Covariance Matrix under Cross – Sectional Dependence , 2010 .

[175]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[176]  Boaz Nadler,et al.  ON THE DISTRIBUTION OF ROY'S LARGEST ROOT TEST IN MANOVA AND IN SIGNAL DETECTION IN NOISE , 2011 .

[177]  Z. Bai,et al.  Limiting behavior of the eigenvalues of a multivariate F matrix , 1983 .

[178]  Walid Hachem,et al.  A CLT FOR INFORMATION-THEORETIC STATISTICS OF NON-CENTERED GRAM RANDOM MATRICES , 2011, 1107.0145.

[179]  B. Nadler,et al.  Do Semidefinite Relaxations Really Solve Sparse PCA , 2013 .

[180]  P. Loubaton,et al.  THE EMPIRICAL EIGENVALUE DISTRIBUTION OF A GRAM MATRIX: FROM INDEPENDENCE TO STATIONARITY , 2005 .

[181]  Noureddine El Karoui,et al.  On information plus noise kernel random matrices , 2010, 1011.2660.

[182]  F. Olver Asymptotics and Special Functions , 1974 .

[183]  Pascal Bianchi,et al.  Performance of Statistical Tests for Single-Source Detection Using Random Matrix Theory , 2009, IEEE Transactions on Information Theory.

[184]  Alexander Soshnikov,et al.  Central limit theorem for traces of large random symmetric matrices with independent matrix elements , 1998 .

[185]  Philippe Loubaton,et al.  A CLT FOR INFORMATION-THEORETIC STATISTICS OF GRAM RANDOM MATRICES WITH A GIVEN VARIANCE PROFILE , 2007, 0706.0166.

[186]  A. Guionnet,et al.  Large deviations of the extreme eigenvalues of random deformations of matrices , 2010, Probability Theory and Related Fields.

[187]  Jun Yin,et al.  A necessary and sufficient condition for edge universality of Wigner matrices , 2012, 1206.2251.

[188]  Debashis Paul,et al.  A Regularized Hotelling’s T2 Test for Pathway Analysis in Proteomic Studies , 2011, Journal of the American Statistical Association.

[189]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[190]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[191]  J. W. Silverstein Weak Convergence of random functions defined by the eigenvectors of sample covariance matrices , 1990 .

[192]  G. Pan,et al.  On asymptotics of eigenvectors of large sample covariance matrix , 2007, 0708.1720.

[193]  J. W. Silverstein On the eigenvectors of large dimensional sample covariance matrices , 1989 .

[194]  Susan Holmes,et al.  Stein's Method: Expository Lectures and Applications , 2004 .

[195]  T. Cai,et al.  A Direct Estimation Approach to Sparse Linear Discriminant Analysis , 2011, 1107.3442.

[196]  Persi Diaconis,et al.  Linear functionals of eigenvalues of random matrices , 2000 .

[197]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[198]  T. Tao,et al.  Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.

[199]  Alex Bloemendal,et al.  Limits of spiked random matrices II , 2011, 1109.3704.

[200]  Noureddine El Karoui Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.

[201]  Dag Jonsson Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .

[202]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[203]  Richard A. Davis,et al.  Limit theory for the largest eigenvalues of sample covariance matrices with heavy-tails , 2011, 1108.5464.

[204]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[205]  J. W. Silverstein,et al.  ON THE SIGNAL-TO-INTERFERENCE RATIO OF CDMA SYSTEMS IN WIRELESS COMMUNICATIONS , 2007, math/0702888.

[206]  Alexander Tikhomirov,et al.  On the rate of convergence to the semi-circular law , 2011, 1109.0611.

[207]  Z. Bai,et al.  EFFECT OF HIGH DIMENSION: BY AN EXAMPLE OF A TWO SAMPLE PROBLEM , 1999 .

[208]  P. Forrester Log-Gases and Random Matrices , 2010 .

[209]  Alexander Soshnikov,et al.  Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .

[210]  Philippe Loubaton,et al.  LARGE INFORMATION PLUS NOISE RANDOM MATRIX MODELS AND CONSISTENT SUBSPACE ESTIMATION IN LARGE SENSOR NETWORKS , 2011, 1106.5119.

[211]  Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE and LUE , 2006, math/0603639.

[212]  Jianfeng Yao,et al.  On sample eigenvalues in a generalized spiked population model , 2008, J. Multivar. Anal..

[213]  Raj Rao Nadakuditi,et al.  Graph spectra and the detectability of community structure in networks , 2012, Physical review letters.

[214]  N. Pillai,et al.  Universality of covariance matrices , 2011, 1110.2501.

[215]  Bernard Delyon,et al.  On a model selection problem from high-dimensional sample covariance matrices , 2011, J. Multivar. Anal..

[216]  M. Wainwright,et al.  High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, 2008 IEEE International Symposium on Information Theory.

[217]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[218]  J. W. Silverstein,et al.  A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .

[219]  Geert Jan Bex,et al.  A Gaussian scenario for unsupervised learning , 1996 .

[220]  D. Paul ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .

[221]  Wang Zhou,et al.  Tracy-Widom law for the extreme eigenvalues of sample correlation matrices , 2011, 1110.5208.

[222]  A. Guionnet,et al.  CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .

[223]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .

[224]  Philippe Loubaton,et al.  A subspace estimator for fixed rank perturbations of large random matrices , 2011, J. Multivar. Anal..

[225]  A. Bose,et al.  Consistency of large dimensional sample covariance matrix under weak dependence , 2014 .

[226]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[227]  Yingying Li,et al.  On the Estimation of Integrated Covariance Matrices of High Dimensional Diffusion Processes , 2010, 1005.1862.

[228]  Universality for certain Hermitian Wigner Matrices under weak moment conditions , 2009, 0910.4467.

[229]  Zhidong Bai,et al.  CLT for Linear Spectral Statistics of Wigner matrices , 2009 .

[230]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[231]  S. P'ech'e,et al.  The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case , 2008, 0812.2320.

[232]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[233]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[234]  Zhidong Bai,et al.  Remarks on the Convergence Rate of the Spectral Distributions of Wigner Matrices , 1999 .

[235]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[236]  G. Biroli,et al.  On the top eigenvalue of heavy-tailed random matrices , 2006, cond-mat/0609070.

[237]  Tiefeng Jiang,et al.  SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS , 2010, 1011.2608.

[238]  Noureddine El Karoui,et al.  Geometric sensitivity of random matrix results: consequences for shrinkage estimators of covariance and related statistical methods , 2011, 1105.1404.

[239]  Brian D. Sutton,et al.  The stochastic operator approach to random matrix theory , 2005 .

[240]  Sasha Sodin,et al.  The spectral edge of some random band matrices , 2009, 0906.4047.

[241]  S. Péché Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.

[242]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[243]  L. Pastur,et al.  Eigenvalue Distribution of Large Random Matrices , 2011 .

[244]  V. Vu,et al.  Random matrices: Law of the determinant , 2011, 1112.0752.

[245]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[246]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[247]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[248]  Song-xi Chen,et al.  A two-sample test for high-dimensional data with applications to gene-set testing , 2010, 1002.4547.

[249]  D. Féral,et al.  The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.

[250]  L. Arnold,et al.  On Wigner's semicircle law for the eigenvalues of random matrices , 1971 .

[251]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[252]  V. Uppuluri,et al.  Asymptotic distribution of eigenvalues of random matrices , 1972 .

[253]  Jack W. Silverstein Some limit theorems on the eigenvectors of large dimensional sample covariance matrices , 1984 .

[254]  G. Pan,et al.  A shrinkage estimation for large dimensional precision matrices using random matrix theory , 2012, 1211.2400.

[255]  M. Pourahmadi,et al.  Nonparametric estimation of large covariance matrices of longitudinal data , 2003 .

[256]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[257]  P. Bickel,et al.  Some theory for Fisher''s linear discriminant function , 2004 .

[258]  Sean O’Rourke,et al.  Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices , 2009, 0909.2677.

[259]  Jun Yin,et al.  Edge universality of correlation matrices , 2011, 1112.2381.

[260]  Z. D. Bai,et al.  Asymptotic properties of eigenmatrices of a large sample covariance matrix , 2011, 1201.0086.

[261]  Jianfeng Yao,et al.  ON ESTIMATION OF THE POPULATION SPECTRAL DISTRIBUTION FROM A HIGH‐DIMENSIONAL SAMPLE COVARIANCE MATRIX , 2010 .

[262]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[263]  Xavier Mestre,et al.  Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.

[264]  The Tracy–Widom Law for Some Sparse Random Matrices , 2009, 0903.4295.

[265]  A. Edelman,et al.  Statistical eigen-inference from large Wishart matrices , 2007, math/0701314.

[266]  Ioana Dumitriu Eigenvalue statistics for beta-ensembles , 2003 .

[267]  J. Bouchaud,et al.  Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management , 2011 .

[268]  J. W. Silverstein,et al.  EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .

[269]  Raj Rao Nadakuditi,et al.  The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.

[270]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[271]  Roberto Garello,et al.  Performance of Eigenvalue-Based Signal Detectors with Known and Unknown Noise Level , 2011, 2011 IEEE International Conference on Communications (ICC).

[272]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[273]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[274]  Arthur Yu Lu Sparse principal component analysis for functional data , 2002 .

[275]  Teodoro Collin RANDOM MATRIX THEORY , 2016 .

[276]  Iain M Johnstone,et al.  APPROXIMATE NULL DISTRIBUTION OF THE LARGEST ROOT IN MULTIVARIATE ANALYSIS. , 2010, The annals of applied statistics.

[277]  A. Soshnikov,et al.  On finite rank deformations of Wigner matrices , 2011, 1103.3731.

[278]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[279]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[280]  Jiang Hu,et al.  Convergence of the empirical spectral distribution function of Beta matrices , 2012, 1208.5953.

[281]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[282]  P. Loubaton,et al.  The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile , 2004, math/0411333.

[283]  L. Pastur,et al.  CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES , 2008, 0809.4698.

[284]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[285]  A. Guionnet,et al.  Fluctuations of the Extreme Eigenvalues of Finite Rank Deformations of Random Matrices , 2010, 1009.0145.

[286]  S. N. Roy On a Heuristic Method of Test Construction and its use in Multivariate Analysis , 1953 .

[287]  Marco Lippi,et al.  The Generalized Dynamic Factor Model , 2002 .

[288]  Alexei Onatski,et al.  Asymptotics of the principal components estimator of large factor models with weakly influential factors , 2012 .

[289]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[290]  G. Pan,et al.  Central limit theorem for Hotelling’s T2 statistic under large dimension , 2008, 0802.0082.

[291]  Terence Tao,et al.  Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.

[292]  On Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices with Non-identically Distributed Entries , 2011, 1104.1663.

[293]  M. Rattray,et al.  Principal-component-analysis eigenvalue spectra from data with symmetry-breaking structure. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.