Random matrix theory in statistics: A review
暂无分享,去创建一个
[1] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[2] M. Pourahmadi,et al. BANDING SAMPLE AUTOCOVARIANCE MATRICES OF STATIONARY PROCESSES , 2009 .
[3] Boaz Nadler,et al. On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix , 2011, J. Multivar. Anal..
[4] F. Götze,et al. Rate of convergence in probability to the Marchenko-Pastur law , 2004 .
[5] T. W. Anderson,et al. An Introduction to Multivariate Statistical Analysis , 1959 .
[6] Y. Yin. Limiting spectral distribution for a class of random matrices , 1986 .
[7] Jianfeng Yao,et al. On the convergence of the spectral empirical process of Wigner matrices , 2005 .
[8] M. Kreĭn,et al. Introduction to the theory of linear nonselfadjoint operators , 1969 .
[9] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[10] Jianfeng Yao,et al. A note on a Marčenko–Pastur type theorem for time series , 2011, 1109.1612.
[11] Tiefeng Jiang,et al. The limiting distributions of eigenvalues of sample correlation matrices , 2004 .
[12] T. Cai,et al. Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.
[13] Alexander Soshnikov. Gaussian limit for determinantal random point fields , 2000 .
[14] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[15] I. Johnstone. MULTIVARIATE ANALYSIS AND JACOBI ENSEMBLES: LARGEST EIGENVALUE, TRACY-WIDOM LIMITS AND RATES OF CONVERGENCE. , 2008, Annals of statistics.
[16] T. Tao,et al. A central limit theorem for the determinant of a Wigner matrix , 2011, 1111.6300.
[17] Noureddine El Karoui,et al. Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.
[18] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .
[19] Z. Bai,et al. Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part II. Sample Covariance Matrices , 1993 .
[20] C. Tracy,et al. Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .
[21] N. O'Connell,et al. PATTERNS IN EIGENVALUES: THE 70TH JOSIAH WILLARD GIBBS LECTURE , 2003 .
[22] Weidong Liu,et al. Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.
[23] Craig A. Tracy,et al. Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .
[24] Michael I. Jordan,et al. A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..
[25] Mérouane Debbah,et al. Eigen-Inference for Energy Estimation of Multiple Sources , 2010, IEEE Transactions on Information Theory.
[26] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[27] Harrison H. Zhou,et al. MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER ℓ1-NORM , 2012 .
[28] Harrison H. Zhou,et al. Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.
[29] T. Tao,et al. Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.
[30] D. Reich,et al. Population Structure and Eigenanalysis , 2006, PLoS genetics.
[31] Boris A. Khoruzhenko,et al. Asymptotic properties of large random matrices with independent entries , 1996 .
[32] Jianqing Fan,et al. High Dimensional Classification Using Features Annealed Independence Rules. , 2007, Annals of statistics.
[33] Michael Wolf,et al. Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011 .
[34] Olivier Ledoit,et al. Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.
[35] Roland Speicher,et al. Second order freeness and fluctuations of random matrices: I. Gaussian and Wishart matrices and cyclic Fock spaces , 2004, math/0405191.
[36] Ohad N. Feldheim,et al. A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.
[37] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[38] K. Wachter. The Limiting Empirical Measure of Multiple Discriminant Ratios , 1980 .
[39] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[40] Harold Widom,et al. On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles , 1999 .
[41] L. R. Haff. Minimax estimators for a multinormal precision matrix , 1977 .
[42] J. W. Silverstein,et al. Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.
[43] Trevor J. Hastie,et al. Sparse Discriminant Analysis , 2011, Technometrics.
[44] J. Bai,et al. Inferential Theory for Factor Models of Large Dimensions , 2003 .
[45] Walid Hachem,et al. On the isolated eigenvalues of large Gram random matrices with a fixed rank deformation , 2012 .
[46] M. Hallin,et al. The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.
[47] Raj Rao Nadakuditi,et al. Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples , 2009, IEEE Journal of Selected Topics in Signal Processing.
[48] C. Donati-Martin,et al. The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.
[49] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[50] J. W. Silverstein,et al. Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices , 2005 .
[51] Zhidong Bai,et al. LARGE SAMPLE COVARIANCE MATRICES WITHOUT INDEPENDENCE STRUCTURES IN COLUMNS , 2008 .
[52] Zongming Ma,et al. FAST APPROACH TO THE TRACY-WIDOM LAW AT THE EDGE OF GOE AND GUE. , 2011, The annals of applied probability : an official journal of the Institute of Mathematical Statistics.
[53] J. Shao,et al. Sparse linear discriminant analysis by thresholding for high dimensional data , 2011, 1105.3561.
[54] Zhidong Bai,et al. CONVERGENCE RATE OF EXPECTED SPECTRAL DISTRIBUTIONS OF LARGE RANDOM MATRICES PART II: SAMPLE COVARIANCE MATRICES , 2008 .
[55] Lebowitz,et al. Gaussian fluctuation in random matrices. , 1994, Physical review letters.
[56] Zhidong Bai,et al. NO EIGENVALUES OUTSIDE THE SUPPORT OF THE LIMITING SPECTRAL DISTRIBUTION OF INFORMATION-PLUS-NOISE TYPE MATRICES , 2012 .
[57] Pei Wang,et al. Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.
[58] Franklin A. Graybill,et al. An Analysis of a Two-Way Model with Interaction and No Replication , 1972 .
[59] Yanrong Yang,et al. The convergence of the empirical distribution of canonical correlation coefficients , 2012 .
[60] Horng-Tzer Yau,et al. Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.
[61] I. Jolliffe. Principal Component Analysis , 2002 .
[62] O. Bohigas,et al. Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .
[63] C. Tracy,et al. Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.
[64] A. Edelman,et al. From Random Matrices to Stochastic Operators , 2006, math-ph/0607038.
[65] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[66] Cheng Wang,et al. Limiting spectral distribution of large-dimensional sample covariance matrices generated by VARMA , 2009, J. Multivar. Anal..
[67] O. Zeitouni,et al. A CLT for a band matrix model , 2004, math/0412040.
[68] J. Nadal,et al. Optimal unsupervised learning , 1994 .
[69] Shurong Zheng,et al. Central limit theorems for linear spectral statistics of large dimensional F-matrices , 2012 .
[70] Oliver Pfaffel,et al. Eigenvalue distribution of large sample covariance matrices of linear processes , 2012, 1201.3828.
[71] M. Ledoux. The concentration of measure phenomenon , 2001 .
[72] M. Srivastava,et al. A test for the mean vector with fewer observations than the dimension , 2008 .
[73] Arup Bose,et al. Another look at the moment method for large dimensional random matrices , 2008 .
[74] Jun Yin,et al. The Isotropic Semicircle Law and Deformation of Wigner Matrices , 2011, 1110.6449.
[75] Noureddine El Karoui,et al. The spectrum of kernel random matrices , 2010, 1001.0492.
[76] S. Péché,et al. Eigenvectors of some large sample covariance matrix ensembles , 2009 .
[77] T. Cai,et al. Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices , 2011, 1102.2925.
[78] Sean O'Rourke,et al. Fluctuations of Matrix Entries of Regular Functions of Sample Covariance Random Matrices , 2011 .
[79] Z. Bao. Strong convergence of ESD for the generalized sample covariance matrices when p/n→0 , 2012 .
[80] T. Tao,et al. Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.
[81] J. W. Silverstein. The Limiting Eigenvalue Distribution of a Multivariate F Matrix , 1985 .
[82] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[83] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[84] J. Baik,et al. The Oxford Handbook of Random Matrix Theory , 2011 .
[85] M. Yuan,et al. Adaptive covariance matrix estimation through block thresholding , 2012, 1211.0459.
[86] Olivier Ledoit,et al. Eigenvectors of some large sample covariance matrix ensembles , 2009, 0911.3010.
[87] I. Johnstone,et al. Augmented sparse principal component analysis for high dimensional data , 2012, 1202.1242.
[88] Z. Bai,et al. Convergence to the Semicircle Law , 1988 .
[89] A. Soshnikov. Determinantal random point fields , 2000, math/0002099.
[90] D. Dey,et al. Trimmed minimax estimator of a covariance matrix , 1986 .
[91] T. H. Baker,et al. Random matrix ensembles with an effective extensive external charge , 1998 .
[92] A. Onatski. Determining the Number of Factors from Empirical Distribution of Eigenvalues , 2010, The Review of Economics and Statistics.
[93] Jun Yin,et al. The outliers of a deformed Wigner matrix , 2012, 1207.5619.
[94] S. Sodin. Random matrices, nonbacktracking walks, and orthogonal polynomials , 2007, math-ph/0703043.
[95] Z. Bai,et al. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .
[96] Huixia Liu,et al. On the Markowitz Mean-Variance Analysis of Self-Financing Portfolios , 2016, Risk Decis. Anal..
[97] Jonas Gustavsson. Gaussian fluctuations of eigenvalues in the GUE , 2004 .
[98] Romain Couillet,et al. Robust M-Estimation for Array Processing: A Random Matrix Approach , 2012, ArXiv.
[99] James O. Ramsay,et al. Principal components analysis for functional data , 1997 .
[100] Zongming Ma. Sparse Principal Component Analysis and Iterative Thresholding , 2011, 1112.2432.
[101] Noureddine El Karoui,et al. On the Realized Risk of High-Dimensional Markowitz Portfolios , 2013, SIAM J. Financial Math..
[102] W. Hachem,et al. Deterministic equivalents for certain functionals of large random matrices , 2005, math/0507172.
[103] S. Péché,et al. Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .
[104] H. Yau,et al. Universality of local spectral statistics of random matrices , 2011, 1106.4986.
[105] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[106] Z. D. Bai,et al. Semicircle Law for Hadamard Products , 2007, SIAM J. Matrix Anal. Appl..
[107] Alexander Soshnikov,et al. Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles , 2006 .
[108] Mérouane Debbah,et al. Random Matrix Methods for Wireless Communications: Applications to wireless communications , 2011 .
[109] S. Péché,et al. On the lower bound of the spectral norm of symmetric random matrices with independent entries , 2007, 0706.0748.
[110] Martin J. Wainwright,et al. A More Powerful Two-Sample Test in High Dimensions using Random Projection , 2011, NIPS.
[111] E. Wigner. On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .
[112] Antonio Auffinger,et al. Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.
[113] F. Hiai,et al. The semicircle law, free random variables, and entropy , 2006 .
[114] Z. Bai,et al. On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .
[115] T. Tao. Topics in Random Matrix Theory , 2012 .
[116] Mariya Shcherbina,et al. Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices , 2011, 1101.3249.
[117] K. Wachter. The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .
[118] Debashis Paul,et al. No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix , 2009, J. Multivar. Anal..
[119] Noureddine El Karoui,et al. Concentration of measure and spectra of random matrices: Applications to correlation matrices, elliptical distributions and beyond , 2009, 0912.1950.
[120] Jian-Feng Yao,et al. Convergence Rates of Spectral Distributions of Large Sample Covariance Matrices , 2003, SIAM J. Matrix Anal. Appl..
[121] H. Markowitz. The optimization of a quadratic function subject to linear constraints , 1956 .
[122] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[123] Theodore P. Hill,et al. Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform , 2003, J. Approx. Theory.
[124] S. Chatterjee. A generalization of the Lindeberg principle , 2005, math/0508519.
[125] P. Deift,et al. Random Matrix Theory: Invariant Ensembles and Universality , 2009 .
[126] Zhidong Bai,et al. A note on the convergence rate of the spectral distributions of large random matrices , 1997 .
[127] A. Soshnikov,et al. ON FINITE RANK DEFORMATIONS OF WIGNER MATRICES II: DELOCALIZED PERTURBATIONS , 2012, 1203.5130.
[128] Patrick L. Combettes,et al. Signal detection via spectral theory of large dimensional random matrices , 1992, IEEE Trans. Signal Process..
[129] Zhidong Bai,et al. On limit theorem for the eigenvalues of product of two random matrices , 2007 .
[130] Bin Yu,et al. Spectral clustering and the high-dimensional stochastic blockmodel , 2010, 1007.1684.
[131] Asymptotic Distribution of the Smallest Eigenvalue of Wishart(N, n) When N, n → ∞ Such That N/n → 0 , 2011 .
[132] D. Dey,et al. Estimation of a covariance matrix under Stein's loss , 1985 .
[133] L. Pastur,et al. Non-Gaussian Limiting Laws for the Entries of Regular Functions of the Wigner Matrices , 2011, 1103.2345.
[134] Tiefeng Jiang,et al. Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles , 2009 .
[135] Marco Lippi,et al. The generalized dynamic factor model: consistency and rates , 2004 .
[136] Z. Bai,et al. CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.
[137] R. Tibshirani,et al. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.
[138] L. R. Haff. Empirical Bayes Estimation of the Multivariate Normal Covariance Matrix , 1980 .
[139] Tiefeng Jiang,et al. Low eigenvalues of Laplacian matrices of large random graphs , 2012 .
[140] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[141] Wei-Liem Loh. Estimating Covariance Matrices , 1991 .
[142] B. Nadler. Finite sample approximation results for principal component analysis: a matrix perturbation approach , 2009, 0901.3245.
[143] I. Johnstone. High Dimensional Statistical Inference and Random Matrices , 2006, math/0611589.
[144] R. Tibshirani,et al. Covariance‐regularized regression and classification for high dimensional problems , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[145] Zongming Ma,et al. Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices , 2012, 1203.0839.
[146] R. Tibshirani,et al. Penalized classification using Fisher's linear discriminant , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[147] R. Vershynin. Spectral norm of products of random and deterministic matrices , 2008, 0812.2432.
[148] John Shawe-Taylor,et al. Sparse canonical correlation analysis , 2009, Machine Learning.
[149] D. Tritchler,et al. Sparse Canonical Correlation Analysis with Application to Genomic Data Integration , 2009, Statistical applications in genetics and molecular biology.
[150] Zhidong Bai,et al. Functional CLT for sample covariance matrices , 2010, 1011.5729.
[151] Noureddine El Karoui. On the largest eigenvalue of Wishart matrices with identity covariance when n, p and p/n tend to infinity , 2003, math/0309355.
[152] J. Ramírez,et al. Beta ensembles, stochastic Airy spectrum, and a diffusion , 2006, math/0607331.
[153] Gabriel Frahm,et al. Random matrix theory and robust covariance matrix estimation for financial data , 2005, physics/0503007.
[154] R. Maronna. Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .
[155] Serena Ng,et al. Determining the Number of Primitive Shocks in Factor Models , 2007 .
[156] B. Nadler,et al. Determining the number of components in a factor model from limited noisy data , 2008 .
[157] A. Onatski. TESTING HYPOTHESES ABOUT THE NUMBER OF FACTORS IN LARGE FACTOR MODELS , 2009 .
[158] David Renfrew,et al. Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices , 2011, 1103.1170.
[159] A. Soshnikov. A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.
[160] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[161] Noureddine El Karoui,et al. High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: Risk underestimation , 2010, 1211.2917.
[162] Matthew Harding,et al. Explaining the single factor bias of arbitrage pricing models in finite samples , 2008 .
[163] Noureddine El Karoui. Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.
[164] Alice Guionnet,et al. Large Random Matrices: Lectures on Macroscopic Asymptotics , 2009 .
[165] Sourav Chatterjee,et al. Fluctuations of eigenvalues and second order Poincaré inequalities , 2007, 0705.1224.
[166] S. Péché,et al. Bulk universality for Wigner matrices , 2009, 0905.4176.
[167] Z. Bai,et al. Corrections to LRT on large-dimensional covariance matrix by RMT , 2009, 0902.0552.
[168] R. Speicher,et al. Lectures on the Combinatorics of Free Probability: The free commutator , 2006 .
[169] Ke Wang. RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES UP TO THE EDGE , 2011, 1104.4832.
[170] Z. Bai,et al. Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices , 1993 .
[171] T. Tao,et al. Random matrices: Sharp concentration of eigenvalues , 2012, 1201.4789.
[172] B. Nadler,et al. MINIMAX BOUNDS FOR SPARSE PCA WITH NOISY HIGH-DIMENSIONAL DATA. , 2012, Annals of statistics.
[173] Bahcall. Random Matrix Model for Superconductors in a Magnetic Field. , 1996, Physical review letters.
[174] Jiti Gao,et al. Asymptotic Theory for Sample Covariance Matrix under Cross – Sectional Dependence , 2010 .
[175] Z. D. Bai,et al. Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .
[176] Boaz Nadler,et al. ON THE DISTRIBUTION OF ROY'S LARGEST ROOT TEST IN MANOVA AND IN SIGNAL DETECTION IN NOISE , 2011 .
[177] Z. Bai,et al. Limiting behavior of the eigenvalues of a multivariate F matrix , 1983 .
[178] Walid Hachem,et al. A CLT FOR INFORMATION-THEORETIC STATISTICS OF NON-CENTERED GRAM RANDOM MATRICES , 2011, 1107.0145.
[179] B. Nadler,et al. Do Semidefinite Relaxations Really Solve Sparse PCA , 2013 .
[180] P. Loubaton,et al. THE EMPIRICAL EIGENVALUE DISTRIBUTION OF A GRAM MATRIX: FROM INDEPENDENCE TO STATIONARITY , 2005 .
[181] Noureddine El Karoui,et al. On information plus noise kernel random matrices , 2010, 1011.2660.
[182] F. Olver. Asymptotics and Special Functions , 1974 .
[183] Pascal Bianchi,et al. Performance of Statistical Tests for Single-Source Detection Using Random Matrix Theory , 2009, IEEE Transactions on Information Theory.
[184] Alexander Soshnikov,et al. Central limit theorem for traces of large random symmetric matrices with independent matrix elements , 1998 .
[185] Philippe Loubaton,et al. A CLT FOR INFORMATION-THEORETIC STATISTICS OF GRAM RANDOM MATRICES WITH A GIVEN VARIANCE PROFILE , 2007, 0706.0166.
[186] A. Guionnet,et al. Large deviations of the extreme eigenvalues of random deformations of matrices , 2010, Probability Theory and Related Fields.
[187] Jun Yin,et al. A necessary and sufficient condition for edge universality of Wigner matrices , 2012, 1206.2251.
[188] Debashis Paul,et al. A Regularized Hotelling’s T2 Test for Pathway Analysis in Proteomic Studies , 2011, Journal of the American Statistical Association.
[189] H. Yau,et al. Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.
[190] Anja Vogler,et al. An Introduction to Multivariate Statistical Analysis , 2004 .
[191] J. W. Silverstein. Weak Convergence of random functions defined by the eigenvectors of sample covariance matrices , 1990 .
[192] G. Pan,et al. On asymptotics of eigenvectors of large sample covariance matrix , 2007, 0708.1720.
[193] J. W. Silverstein. On the eigenvectors of large dimensional sample covariance matrices , 1989 .
[194] Susan Holmes,et al. Stein's Method: Expository Lectures and Applications , 2004 .
[195] T. Cai,et al. A Direct Estimation Approach to Sparse Linear Discriminant Analysis , 2011, 1107.3442.
[196] Persi Diaconis,et al. Linear functionals of eigenvalues of random matrices , 2000 .
[197] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .
[198] T. Tao,et al. Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.
[199] Alex Bloemendal,et al. Limits of spiked random matrices II , 2011, 1109.3704.
[200] Noureddine El Karoui. Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.
[201] Dag Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .
[202] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices , 1998 .
[203] Richard A. Davis,et al. Limit theory for the largest eigenvalues of sample covariance matrices with heavy-tails , 2011, 1108.5464.
[204] J. Bai,et al. Determining the Number of Factors in Approximate Factor Models , 2000 .
[205] J. W. Silverstein,et al. ON THE SIGNAL-TO-INTERFERENCE RATIO OF CDMA SYSTEMS IN WIRELESS COMMUNICATIONS , 2007, math/0702888.
[206] Alexander Tikhomirov,et al. On the rate of convergence to the semi-circular law , 2011, 1109.0611.
[207] Z. Bai,et al. EFFECT OF HIGH DIMENSION: BY AN EXAMPLE OF A TWO SAMPLE PROBLEM , 1999 .
[208] P. Forrester. Log-Gases and Random Matrices , 2010 .
[209] Alexander Soshnikov,et al. Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .
[210] Philippe Loubaton,et al. LARGE INFORMATION PLUS NOISE RANDOM MATRIX MODELS AND CONSISTENT SUBSPACE ESTIMATION IN LARGE SENSOR NETWORKS , 2011, 1106.5119.
[211] Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE and LUE , 2006, math/0603639.
[212] Jianfeng Yao,et al. On sample eigenvalues in a generalized spiked population model , 2008, J. Multivar. Anal..
[213] Raj Rao Nadakuditi,et al. Graph spectra and the detectability of community structure in networks , 2012, Physical review letters.
[214] N. Pillai,et al. Universality of covariance matrices , 2011, 1110.2501.
[215] Bernard Delyon,et al. On a model selection problem from high-dimensional sample covariance matrices , 2011, J. Multivar. Anal..
[216] M. Wainwright,et al. High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, 2008 IEEE International Symposium on Information Theory.
[217] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[218] J. W. Silverstein,et al. A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .
[219] Geert Jan Bex,et al. A Gaussian scenario for unsupervised learning , 1996 .
[220] D. Paul. ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .
[221] Wang Zhou,et al. Tracy-Widom law for the extreme eigenvalues of sample correlation matrices , 2011, 1110.5208.
[222] A. Guionnet,et al. CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .
[223] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .
[224] Philippe Loubaton,et al. A subspace estimator for fixed rank perturbations of large random matrices , 2011, J. Multivar. Anal..
[225] A. Bose,et al. Consistency of large dimensional sample covariance matrix under weak dependence , 2014 .
[226] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[227] Yingying Li,et al. On the Estimation of Integrated Covariance Matrices of High Dimensional Diffusion Processes , 2010, 1005.1862.
[228] Universality for certain Hermitian Wigner Matrices under weak moment conditions , 2009, 0910.4467.
[229] Zhidong Bai,et al. CLT for Linear Spectral Statistics of Wigner matrices , 2009 .
[230] Z. Bai. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .
[231] S. P'ech'e,et al. The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case , 2008, 0812.2320.
[232] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[233] Jianqing Fan,et al. Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.
[234] Zhidong Bai,et al. Remarks on the Convergence Rate of the Spectral Distributions of Wigner Matrices , 1999 .
[235] Karl Pearson F.R.S.. LIII. On lines and planes of closest fit to systems of points in space , 1901 .
[236] G. Biroli,et al. On the top eigenvalue of heavy-tailed random matrices , 2006, cond-mat/0609070.
[237] Tiefeng Jiang,et al. SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS , 2010, 1011.2608.
[238] Noureddine El Karoui,et al. Geometric sensitivity of random matrix results: consequences for shrinkage estimators of covariance and related statistical methods , 2011, 1105.1404.
[239] Brian D. Sutton,et al. The stochastic operator approach to random matrix theory , 2005 .
[240] Sasha Sodin,et al. The spectral edge of some random band matrices , 2009, 0906.4047.
[241] S. Péché. Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.
[242] A. Dembo,et al. Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.
[243] L. Pastur,et al. Eigenvalue Distribution of Large Random Matrices , 2011 .
[244] V. Vu,et al. Random matrices: Law of the determinant , 2011, 1112.0752.
[245] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[246] T. Cai,et al. A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.
[247] K. Johansson. Shape Fluctuations and Random Matrices , 1999, math/9903134.
[248] Song-xi Chen,et al. A two-sample test for high-dimensional data with applications to gene-set testing , 2010, 1002.4547.
[249] D. Féral,et al. The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.
[250] L. Arnold,et al. On Wigner's semicircle law for the eigenvalues of random matrices , 1971 .
[251] T. Tao,et al. Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.
[252] V. Uppuluri,et al. Asymptotic distribution of eigenvalues of random matrices , 1972 .
[253] Jack W. Silverstein. Some limit theorems on the eigenvectors of large dimensional sample covariance matrices , 1984 .
[254] G. Pan,et al. A shrinkage estimation for large dimensional precision matrices using random matrix theory , 2012, 1211.2400.
[255] M. Pourahmadi,et al. Nonparametric estimation of large covariance matrices of longitudinal data , 2003 .
[256] J. W. Silverstein,et al. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .
[257] P. Bickel,et al. Some theory for Fisher''s linear discriminant function , 2004 .
[258] Sean O’Rourke,et al. Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices , 2009, 0909.2677.
[259] Jun Yin,et al. Edge universality of correlation matrices , 2011, 1112.2381.
[260] Z. D. Bai,et al. Asymptotic properties of eigenmatrices of a large sample covariance matrix , 2011, 1201.0086.
[261] Jianfeng Yao,et al. ON ESTIMATION OF THE POPULATION SPECTRAL DISTRIBUTION FROM A HIGH‐DIMENSIONAL SAMPLE COVARIANCE MATRIX , 2010 .
[262] A. Edelman,et al. Matrix models for beta ensembles , 2002, math-ph/0206043.
[263] Xavier Mestre,et al. Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.
[264] The Tracy–Widom Law for Some Sparse Random Matrices , 2009, 0903.4295.
[265] A. Edelman,et al. Statistical eigen-inference from large Wishart matrices , 2007, math/0701314.
[266] Ioana Dumitriu. Eigenvalue statistics for beta-ensembles , 2003 .
[267] J. Bouchaud,et al. Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management , 2011 .
[268] J. W. Silverstein,et al. EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .
[269] Raj Rao Nadakuditi,et al. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.
[270] Adam J. Rothman,et al. Generalized Thresholding of Large Covariance Matrices , 2009 .
[271] Roberto Garello,et al. Performance of Eigenvalue-Based Signal Detectors with Known and Unknown Noise Level , 2011, 2011 IEEE International Conference on Communications (ICC).
[272] A. Soshnikov. Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.
[273] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.
[274] Arthur Yu Lu. Sparse principal component analysis for functional data , 2002 .
[275] Teodoro Collin. RANDOM MATRIX THEORY , 2016 .
[276] Iain M Johnstone,et al. APPROXIMATE NULL DISTRIBUTION OF THE LARGEST ROOT IN MULTIVARIATE ANALYSIS. , 2010, The annals of applied statistics.
[277] A. Soshnikov,et al. On finite rank deformations of Wigner matrices , 2011, 1103.3731.
[278] J. Wishart. THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .
[279] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[280] Jiang Hu,et al. Convergence of the empirical spectral distribution function of Beta matrices , 2012, 1208.5953.
[281] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[282] P. Loubaton,et al. The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile , 2004, math/0411333.
[283] L. Pastur,et al. CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES , 2008, 0809.4698.
[284] K. Johansson. Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.
[285] A. Guionnet,et al. Fluctuations of the Extreme Eigenvalues of Finite Rank Deformations of Random Matrices , 2010, 1009.0145.
[286] S. N. Roy. On a Heuristic Method of Test Construction and its use in Multivariate Analysis , 1953 .
[287] Marco Lippi,et al. The Generalized Dynamic Factor Model , 2002 .
[288] Alexei Onatski,et al. Asymptotics of the principal components estimator of large factor models with weakly influential factors , 2012 .
[289] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[290] G. Pan,et al. Central limit theorem for Hotelling’s T2 statistic under large dimension , 2008, 0802.0082.
[291] Terence Tao,et al. Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.
[292] On Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices with Non-identically Distributed Entries , 2011, 1104.1663.
[293] M. Rattray,et al. Principal-component-analysis eigenvalue spectra from data with symmetry-breaking structure. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.