The temperature-dependence of the dynamic contact angle.

[1]  T. Blake,et al.  Contact-line fluctuations and dynamic wetting. , 2019, Journal of colloid and interface science.

[2]  Stockholm,et al.  Molecular origin of contact line friction in dynamic wetting , 2017, Physical Review Fluids.

[3]  M. Engel,et al.  A Platform for Analysis of Nanoscale Liquids with an Array of Sensor Devices Based on Two-Dimensional Material. , 2016, Nano letters.

[4]  S. Ganesan,et al.  Effects of temperature-dependent contact angle on the flow dynamics of an impinging droplet on a hot solid substrate , 2016 .

[5]  A. Lukyanov,et al.  Dynamic Contact Angle at the Nanoscale: A Unified View. , 2016, ACS nano.

[6]  G. Doyen,et al.  Forced wetting and hydrodynamic assist , 2015 .

[7]  Jiapeng Yu,et al.  Convex nanobending at a moving contact line: the missing mesoscopic link in dynamic wetting. , 2014, ACS nano.

[8]  Hang Ding,et al.  Numerical Simulations of Flows with Moving Contact Lines , 2014 .

[9]  T. Blake,et al.  Toward a predictive theory of wetting dynamics. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[10]  T. Blake Forced wetting of a reactive surface. , 2012, Advances in colloid and interface science.

[11]  S. Shoji,et al.  Surface Modification of Polyethylene Terephthalate (PET) by 172-nm Excimer Lamp , 2012 .

[12]  G. Amberg,et al.  Dissipation in rapid dynamic wetting , 2011, Journal of Fluid Mechanics.

[13]  G. Ross,et al.  Experimental Study on the Evolution of Contact Angles with Temperature Near the Freezing Point , 2010 .

[14]  J. Coninck,et al.  Influence of solid–liquid interactions on dynamic wetting: a molecular dynamics study , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Souheng Wu,et al.  Calculation of interfacial tension in polymer systems , 2007 .

[16]  T. Blake The physics of moving wetting lines. , 2006, Journal of colloid and interface science.

[17]  G. Grest,et al.  Spreading dynamics of polymer nanodroplets. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  P. Sheng,et al.  Molecular scale contact line hydrodynamics of immiscible flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  T. Blake,et al.  Dynamic wetting by liquids of different viscosity. , 2002, Journal of colloid and interface science.

[20]  Mark E. Steinke,et al.  Contact angles and interface behavior during rapid evaporation of liquid on a heated surface , 2002 .

[21]  T. Blake,et al.  The influence of solid-liquid interactions on dynamic wetting. , 2002, Advances in colloid and interface science.

[22]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[23]  J. Rabe,et al.  Effect of temperature on the dynamic contact angle , 1998 .

[24]  Y. Chen,et al.  Plasticization and Crystallization of Poly(ethylene Terephthalate) Induced by Water , 1998 .

[25]  A. Clarke,et al.  Contact Angle Relaxation during the Spreading of Partially Wetting Drops , 1997 .

[26]  John D. Bernardin,et al.  Contact angle temperature dependence for water droplets on practical aluminum surfaces , 1997 .

[27]  J. Ralston,et al.  The dynamics of wetting processes , 1994 .

[28]  J. Ralston,et al.  Forced Liquid Movement on Low Energy Surfaces , 1993 .

[29]  E. Gribanova Dynamic contact angles: Temperature dependence and the influence of the state of the adsorption film , 1992 .

[30]  M. Fermigier,et al.  An experimental investigation of the dynamic contact angle in liquid-liquid systems , 1991 .

[31]  Robbins,et al.  Simulations of contact-line motion: Slip and the dynamic contact angle. , 1989, Physical review letters.

[32]  Joel Koplik,et al.  Molecular dynamics of fluid flow at solid surfaces , 1989 .

[33]  R. G. Cox The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow , 1986, Journal of Fluid Mechanics.

[34]  R. Burley,et al.  A study of the dynamic wetting behaviour of polyester tapes , 1976 .

[35]  O. Voinov Hydrodynamics of wetting , 1976 .

[36]  R. Hoffman A study of the advancing interface. I. Interface shape in liquid—gas systems , 1975 .

[37]  A. W. Neumann,et al.  Contact angles and their temperature dependence: thermodynamic status, measurement, interpretation and application , 1974 .

[38]  Charles M. Burns,et al.  Kinetics of spreading. Polystyrene melts on plane glass surfaces , 1973 .

[39]  S. Tejada,et al.  Studies of dynamic contact angles on solids , 1972 .

[40]  B. Miller,et al.  Dynamic Measurements of the Wetting of Single Filaments , 1970 .

[41]  G. Inverarity,et al.  Dynamic wetting of glass fibre and polymer fibre , 1969 .

[42]  David Tabor,et al.  The direct measurement of normal and retarded van der Waals forces , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[43]  T. Blake,et al.  Kinetics of displacement , 1969 .

[44]  A. Adamson,et al.  Temperature dependence of contact angle and of interfacial free energies in the naphthalene-water-air system , 1968 .

[45]  A. Riddiford,et al.  Dynamic contact angles , 1967 .

[46]  D. H. Chittenden,et al.  An experimental study of the surface composition effect on two-phase flow in a glass capillary tube , 1966 .

[47]  W. Rose,et al.  Moving interfaces and contact angle rate-dependency☆ , 1962 .

[48]  J. Frankel Kinetic theory of liquids , 1946 .

[49]  Samuel Glasstone,et al.  The Theory Of Rate Processes , 1941 .

[50]  R. Ablett XXV. An investigation of the angle of contact between paraffin wax and water , 1923 .

[51]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.