Use of Sustainable Lignin to Enhance Asphalt Binder and Mix Properties

............................................................................................................................ iii ACKNOWLEDGMENTS .........................................................................................................v IMPLEMENTATION STATEMENT .................................................................................... vii TABLE OF CONTENTS ......................................................................................................... ix LIST OF TABLES ................................................................... Error! Bookmark not defined. LIST OF FIGURES ............................................................................................................... xii

[1]  R. Terrel,et al.  WOOD LIGNINS USED AS EXTENDERS FOR ASPHALT IN BITUMINOUS PAVEMENTS (WITH DISCUSSION) , 1979 .

[2]  H. E. Klei,et al.  Use of byproduct lignins as extenders in asphalt , 1983 .

[3]  S. Edwards High temperature. , 1998, Professional nurse.

[4]  Y. S. Ouyang MESOMECHANICAL CHARACTERIZATION OF IN SITU RICE GRAIN HULLS , 2001 .

[5]  Edith Arambula Mercado,et al.  Factors affecting binder properties between production and construction and their impact on quality assurance programs , 2005 .

[6]  R. Robertson,et al.  Lignin as Antioxidant: Limited Study on Asphalts Frequently Used on Kansas Roads , 2006 .

[7]  I. Mondragon,et al.  Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. , 2007, Bioresource technology.

[8]  R. Williams,et al.  The Utilization of Agriculturally Derived Lignin as an Antioxidant in Asphalt Binder , 2007 .

[9]  F. Srienc,et al.  Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis , 2010, Biotechnology and bioprocess engineering : BBE.

[10]  Luyi Sun,et al.  Harvesting silica nanoparticles from rice husks , 2011 .

[11]  Jiang-tao Shi,et al.  Metabolites and chemical group changes in the wood-forming tissue of Pinus koraiensis under inclined conditions , 2012, BioResources.

[12]  Sharifah Rafidah Wan Alwi,et al.  A review on utilisation of biomass from rice industry as a source of renewable energy , 2012 .

[13]  R. Bogel-Łukasik,et al.  Pretreatment and fractionation of wheat straw using various ionic liquids. , 2013, Journal of agricultural and food chemistry.

[14]  P. Villeneuve,et al.  Deep eutectic solvents: Synthesis, application, and focus on lipase‐catalyzed reactions , 2013 .

[15]  B. Birgisson,et al.  Polymer modification of bitumen : Advances and challenges , 2014 .

[16]  C. Boeriu,et al.  Fractionation of five technical lignins by selective extraction in green solvents and characterisation of isolated fractions , 2014 .

[17]  Nuruddin,et al.  Extraction and characterization of lignin from different biomass resources , 2015 .

[18]  Patrick Lamers,et al.  Techno-economic analysis of decentralized biomass processing depots. , 2015, Bioresource technology.

[19]  Munir D. Nazzal,et al.  Effect of Aging on Foamed Warm Mix Asphalt Produced by Water Injection , 2016 .

[20]  N. Wasiuddin,et al.  Correlating Long-Term Chip Seals Performance and Rheological Properties of Aged Asphalt Binders , 2016 .

[21]  Guangji Xu,et al.  Rheological properties and anti-aging performance of asphalt binder modified with wood lignin , 2017 .

[22]  Joshua S. Yuan,et al.  Lignin as Renewable and Superior Asphalt Binder Modifier , 2017 .

[23]  C. Hobson Evaluation of lignin as an antioxidant in asphalt binders and bituminous mixtures : technical summary. , 2017 .

[24]  E. Ghisi,et al.  Asphalt mixtures emission and energy consumption: A review , 2017 .