FORMING REALISTIC LATE-TYPE SPIRALS IN A ΛCDM UNIVERSE: THE ERIS SIMULATION

Simulations of the formation of late-type spiral galaxies in a cold dark matter ({Lambda}CDM) universe have traditionally failed to yield realistic candidates. Here we report a new cosmological N-body/smooth particle hydrodynamic simulation of extreme dynamic range in which a close analog of a Milky Way disk galaxy arises naturally. Named 'Eris', the simulation follows the assembly of a galaxy halo of mass M{sub vir} = 7.9 Multiplication-Sign 10{sup 11} M{sub Sun} with a total of N = 18.6 million particles (gas + dark matter + stars) within the final virial radius, and a force resolution of 120 pc. It includes radiative cooling, heating from a cosmic UV field and supernova explosions (blastwave feedback), a star formation recipe based on a high gas density threshold (n{sub SF} = 5 atoms cm{sup -3} rather than the canonical n{sub SF} = 0.1 atoms cm{sup -3}), and neglects any feedback from an active galactic nucleus. Artificial images are generated to correctly compare simulations with observations. At the present epoch, the simulated galaxy has an extended rotationally supported disk with a radial scale length R{sub d} = 2.5 kpc, a gently falling rotation curve with circular velocity at 2.2 disk scale lengths of V{sub 2.2}more » = 214 km s{sup -1}, an i-band bulge-to-disk ratio B/D = 0.35, and a baryonic mass fraction within the virial radius that is 30% below the cosmic value. The disk is thin, has a typical H I-to-stellar mass ratio, is forming stars in the region of the {Sigma}{sub SFR}-{Sigma}{sub HI} plane occupied by spiral galaxies, and falls on the photometric Tully-Fisher and the stellar-mass-halo-virial-mass relations. Hot (T > 3 Multiplication-Sign 10{sup 5} K) X-ray luminous halo gas makes up only 26% of the universal baryon fraction and follows a 'flattened' density profile {proportional_to}r{sup -1.13} out to r = 100 kpc. Eris appears then to be the first cosmological hydrodynamic simulation in which the galaxy structural properties, the mass budget in the various components, and the scaling relations between mass and luminosity are all consistent with a host of observational constraints. A twin simulation with a low star formation density threshold results in a galaxy with a more massive bulge and a much steeper rotation curve, as in previously published work. A high star formation threshold appears therefore key in obtaining realistic late-type galaxies, as it enables the development of an inhomogeneous interstellar medium where star formation and heating by supernovae occur in a clustered fashion. The resulting outflows at high redshifts reduce the baryonic content of galaxies and preferentially remove low-angular-momentum gas, decreasing the mass of the bulge component. Simulations of even higher resolution that follow the assembly of galaxies with different merger histories shall be used to verify our results.« less

[1]  F. Fraternali,et al.  HI holes and high-velocity clouds in the spiral galaxy NGC 6946 , 2008, 0807.3339.

[2]  Xiaohu Yang,et al.  THE SUBHALO–SATELLITE CONNECTION AND THE FATE OF DISRUPTED SATELLITE GALAXIES , 2008, 0808.2526.

[3]  I. Trujillo,et al.  Color Profiles of Spiral Galaxies: Clues on Outer-Disk Formation Scenarios , 2008, 0807.2776.

[4]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale , 2011, 1104.0019.

[5]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[6]  J. Wadsley,et al.  The removal of cusps from galaxy centres by stellar feedback in the early Universe , 2006, Nature.

[7]  C. Frenk,et al.  X-ray coronae in simulations of disc galaxy formation , 2010, 1005.1642.

[8]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[9]  R. Teyssier,et al.  The formation of disc galaxies in a ΛCDM universe , 2010, 1004.0005.

[10]  Nickolay Y. Gnedin,et al.  MODELING MOLECULAR HYDROGEN AND STAR FORMATION IN COSMOLOGICAL SIMULATIONS , 2008, 0810.4148.

[11]  DISCOVERY OF 14 RADIO PULSARS IN A SURVEY OF THE MAGELLANIC CLOUDS , 2006, astro-ph/0604421.

[12]  J. Wadsley,et al.  THE ROLE OF COLD FLOWS IN THE ASSEMBLY OF GALAXY DISKS , 2008, 0812.0007.

[13]  Ralf Bender,et al.  BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING, , 2010, 1009.3015.

[14]  G. Stinson,et al.  THE EVOLUTION OF CENTRAL GROUP GALAXIES IN HYDRODYNAMICAL SIMULATIONS , 2009, 0906.3022.

[15]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[16]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[17]  The Neutral Atomic Phases of the ISM in the Galaxy , 2002, astro-ph/0207098.

[18]  Angular momentum transport and disc morphology in smoothed particle hydrodynamics simulations of galaxy formation , 2006, astro-ph/0601115.

[19]  B. Robertson,et al.  Disk Galaxy Formation in a Λ Cold Dark Matter Universe , 2004, astro-ph/0401252.

[20]  P. Yoachim,et al.  Structural Parameters of Thin and Thick Disks in Edge-on Disk Galaxies , 2005, astro-ph/0508460.

[21]  A. Klypin,et al.  THE ROLE OF STELLAR FEEDBACK IN THE FORMATION OF GALAXIES , 2007, 0712.3285.

[22]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[23]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[24]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[25]  R. Feldmann,et al.  THE HUBBLE SEQUENCE IN GROUPS: THE BIRTH OF THE EARLY-TYPE GALAXIES , 2010, 1008.3386.

[26]  A. Dekel,et al.  Towards a resolution of the galactic spin crisis: mergers, feedback and spin segregation , 2002, astro-ph/0201187.

[27]  C. Flynn,et al.  On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy , 2006, astro-ph/0608193.

[28]  J. Wadsley,et al.  Cosmological puzzle resolved by stellar feedback in high redshift galaxies , 2006, astro-ph/0605672.

[29]  T. Quinn,et al.  Gasoline: a flexible, parallel implementation of TreeSPH , 2003, astro-ph/0303521.

[30]  H. W. Moos,et al.  Highly Ionized High-Velocity Gas in the Vicinity of the Galaxy , 2002, astro-ph/0207562.

[31]  S. More,et al.  The kinematic connection between galaxies and dark matter haloes , 2010, 1004.4626.

[32]  M. Honma,et al.  Unified Rotation Curve of the Galaxy — Decomposition into de Vaucouleurs Bulge, Disk, Dark Halo, and the 9-kpc Rotation Dip — , 2008, 0811.0859.

[33]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[34]  Cfa,et al.  An observer's view of simulated galaxies: disc-to-total ratios, bars and (pseudo-)bulges , 2010, 1001.4890.

[35]  W. Dehnen,et al.  The velocity dispersion and mass profile of the Milky Way , 2006, astro-ph/0603825.

[36]  C. Brook,et al.  INTERPRETING THE EVOLUTION OF THE SIZE–LUMINOSITY RELATION FOR DISK GALAXIES FROM REDSHIFT 1 TO THE PRESENT , 2010, 1011.0432.

[37]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[38]  Andreas Burkert,et al.  BULGE n AND B/T IN HIGH-MASS GALAXIES: CONSTRAINTS ON THE ORIGIN OF BULGES IN HIERARCHICAL MODELS , 2008, 0807.0040.

[39]  The Milky Way, an Exceptionally Quiet Galaxy: Implications for the Formation of Spiral Galaxies , 2007, astro-ph/0702585.

[40]  Michael E. Anderson,et al.  DO HOT HALOS AROUND GALAXIES CONTAIN THE MISSING BARYONS? , 2010, 1003.3273.

[41]  Gilles Chabrier,et al.  The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.

[42]  J. Bailin,et al.  Cosmological Galaxy Formation Simulations Using SPH , 2010, 1004.0675.

[43]  S. Courteau,et al.  Scaling Relations of Spiral Galaxies , 2007, 0708.0422.

[44]  Forming Disk Galaxies in Lambda CDM Simulations , 2006, astro-ph/0602351.

[45]  M. J. Astrophysik,et al.  Masses for the Local Group and the Milky Way , 2007, 0710.3740.

[46]  F. Governato,et al.  The Formation of a Realistic Disk Galaxy in Λ-dominated Cosmologies , 2004 .

[47]  A. Helmi,et al.  The radial velocity dispersion profile of the Galactic halo : constraining the density profile of the dark halo of the Milky Way , 2005, astro-ph/0506102.

[48]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[49]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[50]  P. Jonsson sunrise: polychromatic dust radiative transfer in arbitrary geometries , 2006, astro-ph/0604118.

[51]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[52]  J. Bailin,et al.  Cosmological galaxy formation simulations using smoothed particle hydrodynamics , 2010 .

[53]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[54]  A. Dekel,et al.  High-redshift clumpy discs and bulges in cosmological simulations , 2009, 0907.3271.

[55]  Matthias Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. II. The Fine Structure of Simulated Galactic Disks , 2003 .

[56]  Lars Hernquist,et al.  HOW DO DISKS SURVIVE MERGERS? , 2008, 0806.1739.

[57]  M. Steinmetz,et al.  The Angular Momentum Problem in Cosmological Simulations of Disk Galaxy Formation , 2009, 0909.4156.

[58]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[59]  G. Stinson,et al.  Star formation and feedback in smoothed particle hydrodynamic simulations – I. Isolated galaxies , 2006, astro-ph/0602350.

[60]  L. Mayer,et al.  Early gas stripping as the origin of the darkest galaxies in the Universe , 2007, Nature.

[61]  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[62]  Christopher D. Martin,et al.  The GALEX Arecibo SDSS Survey I: gas fraction scaling relations of massive galaxies and first data release , 2009, 0912.1610.

[63]  M. Bate,et al.  Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .

[64]  J. Navarro,et al.  Dynamics of Cooling Gas in Galactic Dark Halos , 1991 .

[65]  J. Brinkmann,et al.  The Tully-Fisher Relation and its Residuals for a Broadly Selected Sample of Galaxies , 2006, astro-ph/0608472.

[66]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[67]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[68]  Momentum transfer across shear flows in smoothed particle hydrodynamic simulations of galaxy formation , 2003, astro-ph/0306568.

[69]  B. Gibson,et al.  Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum , 2010, 1010.1004.

[70]  G. Stinson,et al.  Riding the Spiral Waves: Implications of Stellar Migration for the Properties of Galactic Disks , 2008, 0808.0206.

[71]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[72]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[73]  B. Willman,et al.  Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows , 2009, Nature.

[74]  B. Whitney,et al.  THE PRESENT-DAY STAR FORMATION RATE OF THE MILKY WAY DETERMINED FROM SPITZER-DETECTED YOUNG STELLAR OBJECTS , 2010, 1001.3672.

[75]  B. Robertson,et al.  Molecular Hydrogen and Global Star Formation Relations in Galaxies , 2007, 0710.2102.

[76]  K. Ferrière The interstellar environment of our galaxy , 2001, astro-ph/0106359.

[77]  M. Steinmetz,et al.  Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes , 2000, astro-ph/0001003.

[78]  C. McKee,et al.  THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. II: H i AND H2 COLUMN DENSITIES , 2008, 0811.0004.

[79]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[80]  Cambridge,et al.  CONSTRAINING THE MILKY WAY POTENTIAL WITH A SIX-DIMENSIONAL PHASE-SPACE MAP OF THE GD-1 STELLAR STREAM , 2009, 0907.1085.

[81]  L. F. Grove,et al.  HOT GAS HALOS AROUND DISK GALAXIES: CONFRONTING COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS , 2009, 0903.0665.

[82]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[83]  S. White,et al.  The formation and survival of discs in a ΛcDM universe , 2008, 0812.0976.

[84]  The structure of galactic disks - Studying late-type spiral galaxies using SDSS , 2006, astro-ph/0603682.

[85]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[86]  Y. Sofue,et al.  Three-Dimensional Distribution of the ISM in the Milky Way Galaxy: I. The H I Disk , 2003, astro-ph/0304338.

[87]  U. Munari,et al.  The RAVE Survey: Constraining the Local Galactic Escape Speed , 2006, Proceedings of the International Astronomical Union.

[88]  A. Graham,et al.  Inclination- and dust-corrected galaxy parameters: bulge-to-disc ratios and size–luminosity relations , 2008, 0805.3565.

[89]  Warren R. Brown,et al.  THE MASS PROFILE OF THE GALAXY TO 80 kpc , 2010, 1005.2619.

[90]  C. Brook,et al.  Forming a large disc galaxy from a z < 1 major merger , 2008, 0812.0379.