AlmostH-factors in dense graphs

The following asymptotic result is proved. For every?>0, and for every positive integerh, there exists ann0=n0(?, h) such that for every graphHwithhvertices and for everynn0, any graphGwithhnvertices and with minimum degreed?((?(H)?1)/?(H)+?)hncontainsnvertex disjoint copies ofH. This result is asymptotically tight and its proof supplies a polynomial time algorithm for the corresponding algorithmic problem.

[1]  Vojtech Rödl,et al.  The algorithmic aspects of the regularity lemma , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[2]  Vasek Chvátal,et al.  The tail of the hypergeometric distribution , 1979, Discret. Math..

[3]  Mohamed H. El-Zahar,et al.  On circuits in graphs , 1984, Discret. Math..

[4]  Noga Alon The String Chromatic Number of a Graph , 1992, Random Struct. Algorithms.

[5]  J. Bondy,et al.  Pancyclic graphs II , 1971 .

[6]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[7]  Andras Hajnal,et al.  On the maximal number of independent circuits in a graph , 1963 .

[8]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[9]  Noga Alon,et al.  2-factors in Dense Graphs , 1996, Discret. Math..

[10]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[11]  János Komlós,et al.  Proof of a Packing Conjecture of Bollobás , 1995, Combinatorics, Probability and Computing.

[12]  E. Szemerédi Regular Partitions of Graphs , 1975 .