The influence of cationic tetrapropoxycalix[4]arene choline on protolytic equilibria of acid-base indicators in aqueous solutions

[1]  N. Mchedlov-Petrossyan Protolytic equilibrium in lyophilic nanosized dispersions: Differentiating influence of the pseudophase and salt effects , 2008 .

[2]  R. Rodik,et al.  The Nature of Aqueous Solutions of a Cationic Calix[4]arene: A Comparative Study of Dye–Calixarene and Dye–Surfactant Interactions , 2006, Sensors (Basel, Switzerland).

[3]  H. Pal,et al.  Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pK(a) shifts and binding affinities for cucurbit[7]uril and beta-cyclodextrin. , 2006, The journal of physical chemistry. B.

[4]  A. Mustafina,et al.  Complexation and Self-Assembling of Sulfonatomethylated Calix[4]resorcinarene with Both Organic and Lanthanide Ions in Aqueous Media , 2004 .

[5]  A. Konovalov,et al.  Aggregation and counter ion binding ability of sulfonatomethylcalix[4]resorcinarenes in aqueous solutions , 2004 .

[6]  N. Mchedlov-Petrossyan,et al.  Ionic Equilibria of Chromophoric Reagents in Microemulsions , 2003 .

[7]  T. Jin A New Fluorometric Method for the Detection of the Neurotransmitter Acetylcholine in Water Using a Dansylcholine Complex with p-Sulfonated Calix[8]arene , 2003 .

[8]  Bao-hang Han,et al.  Molecular Recognition and Complexation Thermodynamics of Dye Guest Molecules by Modified Cyclodextrins and Calixarenesulfonates , 2002 .

[9]  A. Coleman,et al.  Para-acyl calix[4]arenes: amphiphilic self-assembly from the molecular to the mesoscopic level. , 2002, Chemical communications.

[10]  H. Zhang,et al.  Cooperative multiple recognition by novel calix[4]arene-tethered beta-cyclodextrin and calix[4]arene-bridged bis(beta-cyclodextrin). , 2001, The Journal of organic chemistry.

[11]  M. Barra,et al.  Inhibition of quinone-imine dye deamination by complexation with para-sulfonated calixarenes. , 2001, The Journal of organic chemistry.

[12]  Yongjun Zhang,et al.  Self-assembly of small molecules: An approach combining electrostatic self-assembly technology with host–guest chemistry , 2001 .

[13]  Liu,et al.  Inclusion complexation of acridine red dye by calixarenesulfonates and cyclodextrins: opposite fluorescent behavior , 2000, The Journal of organic chemistry.

[14]  M. Kodama,et al.  Peptide library based on calix[4]arene , 1999 .

[15]  H. Schneider,et al.  Interactions between aminocalixarenes and nucleotides or nucleic acids , 1999 .

[16]  D. Reinhoudt,et al.  Interconnective host-guest complexation of b-cyclodextrin-calix[4]arene couples , 1999 .

[17]  A. Coleman,et al.  Complexation of basic amino acids by water‐soluble calixarene sulphonates as a study of the possiblemechanisms of recognition of calixarene sulphonates by proteins , 1998 .

[18]  N. Iki,et al.  A New Water-Soluble Host Molecule Derived from Thiacalixarene , 1998 .

[19]  I. Warner,et al.  Spectroscopic Studies of Brilliant Cresyl Blue/Water-Soluble Sulfonated Calix[4]Arene Complex , 1998 .

[20]  S. Bhat,et al.  Interaction of phenazinium dyes and methyl orange with micelles of various charge types , 1996 .

[21]  S. Shinkai,et al.  Tailor-making of desired assemblies from well-designed monomers: use of calix[4]arene conformers as building blocks , 1993 .

[22]  T. Arimura,et al.  New water-soluble host calixarenes bearing chiral substituents , 1991 .

[23]  A. Casnati,et al.  Chloromethylation of calixarenes and synthesis of new water soluble macrocyclic hosts , 1989 .

[24]  C. Drummond,et al.  Acid-base equilibria in aqueous micellar solutions. Part 1. - 'Simple' weak acids and bases , 1989 .

[25]  M. Politi,et al.  Laser pH-jump initiated proton transfer on charged micellar surfaces , 1984 .

[26]  K. L. Mittal,et al.  Micellization, solubilization, and microemulsions , 1977 .

[27]  F. Quadrifoglio,et al.  The interaction of methyl orange and other azo-dyes with polyelectrolytes and with colloidal electrolytes in dilute aqueous solution , 1971 .