Automatic Extraction of Control Points for the Registration of Optical Satellite and LiDAR Images

A novel method for automatic extraction of control points for the registration of optical images with Light Detection And Ranging (LiDAR) data is proposed. It is based on transformation-invariant detection of salient image disks (SIDs), which determine the location of control points as the centers of the corresponding image fragments. The SID is described by a feature vector, which, in addition to the coordinates and diameter, includes intensity descriptors and region shape characteristics of the image fragment. SIDs are effectively extracted using multiscale isotropic matched filtering-a visual attention operator that indicates image locations with high-intensity contrast, homogeneity, and local shape saliency. This paper discusses the extraction of control points from both natural landscapes and structured scenes with man-made objects. Registration experiments conducted on QuickBird imagery with corresponding LiDAR data validated the proposed approach.

[1]  A. Habib,et al.  BUNDLE ADJUSTMENT OF IMAGES FROM NON-METRIC CCD CAMERA USING LIDAR DATA AS CONTROL POINTS , 2004 .

[2]  J. Campbell Introduction to remote sensing , 1987 .

[3]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[4]  T. Schenk FUSION OF LIDAR DATA AND AERIAL IMAGERY FOR A MORE COMPLETE SURFACE DESCRIPTION , 2002 .

[5]  Han Wang,et al.  Analysis of gray level corner detection , 1999, Pattern Recognit. Lett..

[6]  Heikki Mannila,et al.  Distance measures for point sets and their computation , 1997, Acta Informatica.

[7]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[8]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[9]  Nicu Sebe,et al.  Comparing salient point detectors , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[10]  Vito Di Gesù,et al.  A fast recursive algorithm to compute local axial moments , 2001, Signal Process..

[11]  Mohamed S. Kamel,et al.  Virtual circles: a new set of features for fast image registration , 2003, Pattern Recognit. Lett..

[12]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Roman M. Palenichka,et al.  Multiscale Isotropic Matched Filtering for Individual Tree Detection in LiDAR Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[16]  Fabio Dell'Acqua,et al.  Mode-Based Method for Matching of Pre- and Postevent Remotely Sensed Images , 2009, IEEE Geoscience and Remote Sensing Letters.

[17]  Kiyun Yu,et al.  Registration of aerial imagery and aerial LiDAR data using centroids of plane roof surfaces as control information , 2006 .

[18]  George C. Stockman,et al.  Matching Images to Models for Registration and Object Detection via Clustering , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[20]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[21]  Roman M. Palenichka,et al.  Object Shape Extraction Based on the Piecewise Linear Skeletal Representation , 2005, ICIAR.

[22]  Hemant D. Tagare,et al.  A Maximum-Likelihood Strategy for Directing Attention during Visual Search , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Edwin R. Hancock,et al.  Correspondence Matching with Modal Clusters , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[25]  Sang Wook Lee,et al.  ICP Registration Using Invariant Features , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Mark Hedley,et al.  Fast corner detection , 1998, Image Vis. Comput..

[27]  Zhenyu Zhang,et al.  LiDAR-Derived High Quality Ground Control Information and DEM for Image Orthorectification , 2007, GeoInformatica.

[28]  Yehezkel Yeshurun,et al.  Context-free attentional operators: The generalized symmetry transform , 1995, International Journal of Computer Vision.

[29]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[30]  Roman M. Palenichka Fast Recursive Computation of Local Axial Moments by Using Primitive Kernel Functions , 1999, ACPC.

[31]  C. Song,et al.  Urban 3D GIS From LiDAR and digital aerial images , 2004, Comput. Geosci..

[32]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[33]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Charles V. Stewart,et al.  Registration of combined range-intensity scans: Initialization through verification , 2008, Comput. Vis. Image Underst..

[35]  Ming Tang,et al.  A new robust circular Gabor based object matching by using weighted Hausdorff distance , 2004, Pattern Recognit. Lett..