Modification of avian pathogenic Escherichia coli χ7122 lipopolysaccharide increases accessibility to glycoconjugate antigens

[1]  B. Wren,et al.  PglB function and glycosylation efficiency is temperature dependent when the pgl locus is integrated in the Escherichia coli chromosome , 2022, Microbial Cell Factories.

[2]  B. Wren,et al.  Evaluation of a Campylobacter jejuni N-glycan-ExoA glycoconjugate vaccine to reduce C. jejuni colonisation in chickens. , 2021, Vaccine.

[3]  B. Wren,et al.  Multivalent poultry vaccine development using Protein Glycan Coupling Technology , 2021, Microbial Cell Factories.

[4]  R. Rappuoli,et al.  The role of vaccines in combatting antimicrobial resistance , 2021, Nature Reviews Microbiology.

[5]  B. Wren,et al.  Evaluation of Glycosylated FlpA and SodB as Subunit Vaccines Against Campylobacter jejuni Colonisation in Chickens , 2020, Vaccines.

[6]  A. Rai,et al.  Enterobacterial Common Antigen: Synthesis and Function of an Enigmatic Molecule , 2020, mBio.

[7]  M. Stevens,et al.  Avian Pathogenic Escherichia coli (APEC) Strain-Dependent Immunomodulation of Respiratory Granulocytes and Mononuclear Phagocytes in CSF1R-Reporter Transgenic Chickens , 2020, Frontiers in Immunology.

[8]  P. Reeves,et al.  Structure and genetics of Escherichia coli O antigens , 2019, FEMS microbiology reviews.

[9]  Jingyi Fei,et al.  An improved method for bacterial immunofluorescence staining to eliminate antibody exclusion from the fixed nucleoid. , 2019, Biochemistry.

[10]  S. Mayrhofer,et al.  The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview , 2018, Poultry science.

[11]  S. Godbout,et al.  Use of antibiotics in broiler production: Global impacts and alternatives , 2018, Animal nutrition.

[12]  H. Nothaft,et al.  Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine , 2016, Scientific Reports.

[13]  H. Nothaft,et al.  Glycoengineered Outer Membrane Vesicles: A Novel Platform for Bacterial Vaccines , 2016, Scientific Reports.

[14]  M. Hänninen,et al.  Campylobacteriosis: the role of poultry meat. , 2016, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[15]  Marius Gilbert,et al.  Global trends in antimicrobial use in food animals , 2015, Proceedings of the National Academy of Sciences.

[16]  M. Nissen,et al.  Reducing Campylobacter jejuni Colonization of Poultry via Vaccination , 2014, PloS one.

[17]  Gemma C. Langridge,et al.  Sequencing and functional annotation of avian pathogenic Escherichia coli serogroup O78 strains reveals the evolution of E. coli lineages pathogenic for poultry via distinct mechanisms , 2013 .

[18]  B. Wren,et al.  Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. , 2012, Journal of medical microbiology.

[19]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[20]  Matthew Berriman,et al.  Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data , 2011, Bioinform..

[21]  D. Kasper,et al.  A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design , 2011, Nature Medicine.

[22]  D. Kasper,et al.  A novel mechanism for glycoconjugate vaccine activation of the adaptive immune system , 2012 .

[23]  S. Clare,et al.  Enhanced Virulence of Salmonella enterica Serovar Typhimurium after Passage through Mice , 2010, Infection and Immunity.

[24]  Robert J. Moore,et al.  NetB, a Pore-Forming Toxin from Necrotic Enteritis Strains of Clostridium perfringens , 2010, Toxins.

[25]  M. Hornef,et al.  O-Antigen Delays Lipopolysaccharide Recognition and Impairs Antibacterial Host Defense in Murine Intestinal Epithelial Cells , 2009, PLoS pathogens.

[26]  S. Engelmann,et al.  "Gently rough": the vaccine potential of a Salmonella enterica regulatory lipopolysaccharide mutant. , 2008, The Journal of infectious diseases.

[27]  A. Lynne,et al.  Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. , 2008, Journal of animal science.

[28]  M. Valvano,et al.  Functional Characterization and Membrane Topology of Escherichia coli WecA, a Sugar-Phosphate Transferase Initiating the Biosynthesis of Enterobacterial Common Antigen and O-Antigen Lipopolysaccharide , 2007, Journal of bacteriology.

[29]  Markus Aebi,et al.  Definition of the bacterial N‐glycosylation site consensus sequence , 2006, The EMBO journal.

[30]  M. Morange,et al.  Microbial Cell Factories , 2006 .

[31]  F. Haesebrouck,et al.  Clostridium perfringens in poultry: an emerging threat for animal and public health , 2004, Avian pathology : journal of the W.V.P.A.

[32]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[33]  Simon J North,et al.  N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. , 2002, Science.

[34]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[35]  D. Court,et al.  An efficient recombination system for chromosome engineering in Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Szymanski,et al.  Evidence for a system of general protein glycosylation in Campylobacter jejuni , 1999, Molecular microbiology.

[37]  A. Stewart,et al.  Rapid modification of bacterial artificial chromosomes by ET-recombination. , 1999, Nucleic acids research.

[38]  K. Barr,et al.  Role of the rfe gene in the synthesis of the O8 antigen in Escherichia coli K-12 , 1994, Journal of bacteriology.