A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations

Let $v(x, t)= v^r e_r + v^\theta e_\theta + v^z e_z$ be a solution to the three-dimensional incompressible axially-symmetric Navier-Stokes equations. Denote by $b = v^r e_r + v^z e_z$ the radial-axial vector field. Under a general scaling invariant condition on $b$, we prove that the quantity $\Gamma = r v^\theta$ is H\"older continuous at $r = 0$, $t = 0$. As an application, we give a partial proof of a conjecture on Liouville property by Koch-Nadirashvili-Seregin-Sverak in \cite{KNSS} and Seregin-Sverak in \cite{SS}. As another application, we prove that if $b \in L^\infty([0, T], BMO^{-1})$, then $v$ is regular. This provides an answer to an open question raised by Koch and Tataru in \cite{KochTataru} about the uniqueness and regularity of Navier-Stokes equations in the axially-symmetric case.

[1]  Robert M. Strain,et al.  Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations II , 2007, math/0701796.

[2]  Milan Pokorný,et al.  On Axially Symmetric Flows in $mathbb R^3$ , 1999 .

[3]  Dynamic Stability of the 3D Axi-symmetric Navier-Stokes Equations with Swirl , 2006, math/0608295.

[4]  H. Yau,et al.  Lower Bounds on the Blow-Up Rate of the Axisymmetric Navier–Stokes Equations II , 2007, 0709.4230.

[5]  M. R. Ukhovskii,et al.  Axially symmetric flows of ideal and viscous fluids filling the whole space , 1968 .

[6]  Qi S. Zhang A Strong Regularity Result for Parabolic Equations , 2004 .

[7]  Vladimir Sverak,et al.  L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .

[8]  Fanghua Lin,et al.  A new proof of the Caffarelli‐Kohn‐Nirenberg theorem , 1998 .

[9]  Vlad Vicol,et al.  Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics , 2010, 1007.1211.

[10]  Qi S. Zhang,et al.  A Priori Bounds for the Vorticity of Axis Symmetric Solutions to the Navier-Stokes Equations , 2008, 0811.1609.

[11]  Nikolai Nadirashvili,et al.  Liouville theorems for the Navier–Stokes equations and applications , 2007, 0709.3599.

[12]  Z. Xin,et al.  One-point singular solutions to the Navier-Stokes equations , 1998 .

[13]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[14]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[15]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[16]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[17]  F. John,et al.  On functions of bounded mean oscillation , 1961 .

[18]  Thomas Y. Hou,et al.  Dynamic stability of the three‐dimensional axisymmetric Navier‐Stokes equations with swirl , 2008 .

[19]  H. Miura Remark on uniqueness of mild solutions to the Navier–Stokes equations , 2005 .

[20]  J. Neustupa,et al.  An Interior Regularity Criterion for an Axially Symmetric Suitable Weak Solution to the Navier—Stokes Equations , 2000 .

[21]  Jürgen Moser,et al.  A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations , 1960 .

[22]  V. Sverák,et al.  On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier–Stokes Equations , 2008, 0804.1803.

[23]  F. Lin,et al.  Elliptic Partial Differential Equations , 2000 .

[24]  T. Hou,et al.  Global Regularity of the 3D Axi-Symmetric Navier–Stokes Equations with Anisotropic Data , 2008, 0901.3486.

[25]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[26]  Pierre Germain,et al.  Regularity of Solutions to the Navier-Stokes Equations Evolving from Small Data in BMO−1 , 2006, math/0609781.

[27]  L. Silvestre,et al.  On divergence-free drifts , 2010, 1010.6025.

[28]  Dongho Chae,et al.  Digital Object Identifier (DOI) 10.1007/s002090100317 , 2002 .

[29]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .