Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm

An improved online multiple instance learning (IMIL) for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose weak classifier from a classifier pool, which avoids computing instance probabilities and bag probability M times. Furthermore, a feedback strategy is presented to update weak classifiers. In the feedback update strategy, different weights are assigned to the tracking result and template according to the maximum classifier score. Finally, the presented algorithm is compared with other state-of-the-art algorithms. The experimental results demonstrate that the proposed tracking algorithm runs in real-time and is robust to occlusion and appearance changes.

[1]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[2]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Amir Hooshang Mazinan,et al.  Applying mean shift, motion information and Kalman filtering approaches to object tracking. , 2012, ISA transactions.

[4]  Zhiyong Feng,et al.  Robust visual tracking via online multiple instance learning with Fisher information , 2015, Pattern Recognit..

[5]  Lu Yang,et al.  Sparse representation and learning in visual recognition: Theory and applications , 2013, Signal Process..

[6]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[7]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[8]  Shengping Zhang,et al.  Robust visual tracking based on online learning sparse representation , 2013, Neurocomputing.

[9]  Hai Tao,et al.  Object Tracking using Color Correlogram , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[10]  Yuichi Motai,et al.  Human tracking from a mobile agent: Optical flow and Kalman filter arbitration , 2012, Signal Process. Image Commun..

[11]  Yao Lu,et al.  Online Visual Tracking using Multiple Instance Learning with Instance Significance Estimation , 2015, ArXiv.

[12]  Kaihua Zhang,et al.  Real-time visual tracking via online weighted multiple instance learning , 2013, Pattern Recognit..

[13]  Paul A. Viola,et al.  Multiple Instance Boosting for Object Detection , 2005, NIPS.

[14]  Song Wang,et al.  Object tracking via appearance modeling and sparse representation , 2011, Image Vis. Comput..

[15]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[16]  Thomas Hofmann,et al.  Support Vector Machines for Multiple-Instance Learning , 2002, NIPS.

[17]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[18]  Kristen Grauman,et al.  Keywords to visual categories: Multiple-instance learning forweakly supervised object categorization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[20]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[21]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[22]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Huchuan Lu,et al.  Online multiple support instance tracking , 2011, Face and Gesture 2011.

[24]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Pietro Perona,et al.  Multiple Component Learning for Object Detection , 2008, ECCV.

[26]  B. Kröse,et al.  An EM-like algorithm for color-histogram-based object tracking , 2004, CVPR 2004.

[27]  Boris Babenko,et al.  Weakly Supervised Object Localization with Stable Segmentations , 2008, ECCV.

[28]  Ben J. A. Kröse,et al.  An EM-like algorithm for color-histogram-based object tracking , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[29]  Xin Xu,et al.  Logistic Regression and Boosting for Labeled Bags of Instances , 2004, PAKDD.