Tight upper bounds for polynomial multiplication

Efficient arithmetic over finite fields has high relevance both in hardware and software implementations. One of the most expensive operation over finite field is the multiplication. To our knowledge, the best known explicit upper bounds for the polynomial multiplication were obtained using the multiplication technique presented in [3]. In this paper, we improve such explicit upper bounds and show how this research allows us to reduce the number of bit operations needed to multiply m-bit polynomials. Key–Words: Polynomial multiplication, Karatsuba algorithm, optimizations, AND/XOR gates

[1]  Richard E. Blahut,et al.  Fast Algorithms for Digital Signal Processing , 1985 .

[2]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[3]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[4]  P. Langendorfer,et al.  An Efficient Polynomial Multiplier in GF(2m) and its Application to ECC Designs , 2007, 2007 Design, Automation & Test in Europe Conference & Exhibition.

[5]  R.C. Agarwal,et al.  Number theory in digital signal processing , 1980, Proceedings of the IEEE.

[6]  Joachim von zur Gathen,et al.  Fast arithmetic for polynomials over F2in hardware , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[7]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[8]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[9]  Jongin Lim,et al.  A Non-redundant and Efficient Architecture for Karatsuba-Ofman Algorithm , 2005, ISC.

[10]  R. Blahut Theory and practice of error control codes , 1983 .

[11]  Daniel J. Bernstein,et al.  Batch Binary Edwards , 2009, CRYPTO.

[12]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[13]  F. Rodŕıguez-Henŕ,et al.  On fully parallel Karatsuba Multipliers for � , 2003 .

[14]  Anatolij A. Karatsuba,et al.  Multiplication of Multidigit Numbers on Automata , 1963 .

[15]  S. Cook,et al.  ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .

[16]  Luís Sousa RECENT ADVANCES in COMPUTER SCIENCE , 2013 .

[17]  Thomas Beth,et al.  Arithmetic Operations in GF(2 m ). , 1993 .