Three-layered electrolyte membranes with acid reservoir for prolonged lifetime of high-temperature polymer electrolyte membrane fuel cells

[1]  Qingfeng Li,et al.  Feasibility of ultra-low Pt loading electrodes for high temperature proton exchange membrane fuel cells based in phosphoric acid-doped membrane , 2019, International Journal of Hydrogen Energy.

[2]  P. Garcia-Ybarra,et al.  Ten-fold reduction from the state-of-the-art platinum loading of electrodes prepared by electrospraying for high temperature proton exchange membrane fuel cells , 2018, Electrochemistry Communications.

[3]  J. Kaczerowski,et al.  Operation Strategies Based on Carbon Corrosion and Lifetime Investigations for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks , 2018 .

[4]  L. Cleemann,et al.  Acid Distribution and Durability of HT‐PEM Fuel Cells with Different Electrode Supports , 2018 .

[5]  Hee-Young Park,et al.  Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells , 2017 .

[6]  D. Aili,et al.  Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes , 2017 .

[7]  D. Aili,et al.  Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole , 2017 .

[8]  Samuel Simon Araya,et al.  A comprehensive review of PBI-based high temperature PEM fuel cells , 2016 .

[9]  Joachim Scholta,et al.  Long term testing of start–stop cycles on high temperature PEM fuel cell stack , 2015 .

[10]  Qingfeng Li,et al.  Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells , 2014 .

[11]  C. Scheu,et al.  Influence of thermal post-curing on the degradation of a cross-linked polybenzimidazole-based membrane for high temperature polymer electrolyte membrane fuel cells , 2014 .

[12]  K. Mayrhofer,et al.  Design criteria for stable Pt/C fuel cell catalysts , 2014, Beilstein journal of nanotechnology.

[13]  Yuka Oono,et al.  Prolongation of lifetime of high temperature proton exchange membrane fuel cells , 2013 .

[14]  C. Roth,et al.  Analyzing the Influence of H3PO4 as Catalyst Poison in High Temperature PEM Fuel Cells Using in-operando X-ray Absorption Spectroscopy , 2013 .

[15]  A. Casalegno,et al.  On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid , 2012 .

[16]  Y. Oono,et al.  Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells , 2012 .

[17]  Thomas J. Schmidt,et al.  Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges , 2012 .

[18]  D. Aili,et al.  Thermal curing of PBI membranes for high temperature PEM fuel cells , 2012 .

[19]  Y. Oono,et al.  Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells , 2010 .

[20]  Werner Lehnert,et al.  Redistribution of Phosphoric Acid in Membrane Electrode Assemblies for High Temperature Polymer Electrolyte Fuel Cells , 2009 .

[21]  Werner Lehnert,et al.  Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers , 2009 .

[22]  Robert F. Savinell,et al.  High temperature proton exchange membranes based on polybenzimidazoles for fuel cells , 2009 .

[23]  Brian C. Benicewicz,et al.  Durability Studies of PBI‐based High Temperature PEMFCs , 2008 .

[24]  S. Maaß,et al.  Carbon support oxidation in PEM fuel cell cathodes , 2008 .

[25]  T. Schmidt,et al.  Durability and Reliability in High-Temperature Reformed Hydrogen PEFCs , 2006 .

[26]  Torsten Berning,et al.  Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte , 2006 .

[27]  T. Schmidt Durability and Degradation in High-Temperature Polymer Electrolyte Fuel Cells , 2006 .

[28]  Ronghuan He,et al.  The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C , 2003 .

[29]  J.A.S. Bett,et al.  Electrochemical oxidation of carbon black in concentrated phosphoric acid at 135°C , 1973 .

[30]  L. Cleemann,et al.  Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters , 2018 .

[31]  W. Lehnert,et al.  Determination of Anion Transference Number and Phosphoric Acid Diffusion Coefficient in High Temperature Polymer Electrolyte Membranes , 2018 .

[32]  F. Marone,et al.  Breaking through the Cracks: On the Mechanism of Phosphoric Acid Migration in High Temperature Polymer Electrolyte Fuel Cells , 2018 .

[33]  Jens Oluf Jensen,et al.  High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives , 2016 .

[34]  L. Cleemann,et al.  Durability Issues and Status of PBI-Based Fuel Cells , 2016 .

[35]  Marco Stampanoni,et al.  Dynamic Operation of HT-PEFC: In-Operando Imaging of Phosphoric Acid Profiles and (Re)distribution , 2015 .

[36]  Karren L. More,et al.  A Comparative Study of Phosphoric Acid-Doped m-PBI Membranes , 2014 .

[37]  Paul Taichiang Yu,et al.  Investigation of Carbon Corrosion Behavior and Kinetics in Proton Exchange Membrane Fuel Cell Cathode Electrodes , 2013 .

[38]  Brian C. Benicewicz,et al.  Chapter 19 High-temperature polybenzimidazole-based membranes , 2009 .

[39]  Brian C. Benicewicz,et al.  Polybenzimidazole/Acid Complexes as High-Temperature Membranes , 2008 .

[40]  P. Stonehart,et al.  Carbon substrates for phosphoric acid fuel cell cathodes , 1984 .