On the Complexity of Computing the Topology of Real Algebraic Space Curves

This paper presents an algorithm to compute the topology of an algebraic space curve. This is a modified version of the previous algorithm. Furthermore, the authors also analyse the bit complexity of the algorithm, which is $$\widetilde{\cal O}\left( {{N^{20}}} \right)$$ O ˜ ( N 20 ) , where N = max{ d, τ }, d and τ are the degree bound and the bit size bound of the coefficients of the defining polynomials of the algebraic space curve. To our knowledge, this is the best bound among the existing work. It gains the existing results at least N 2 . Meanwhile, the paper contains some contents of the conference papers (CASC 2014 and SNC 2014).

[1]  Raimund Seidel,et al.  On the exact computation of the topology of real algebraic curves , 2005, SCG.

[2]  Fabrice Rouillier,et al.  On the Topology of Real Algebraic Plane Curves , 2010, Math. Comput. Sci..

[3]  Michael Sagraloff,et al.  On the complexity of computing with planar algebraic curves , 2014, J. Complex..

[4]  Laureano González-Vega,et al.  Efficient topology determination of implicitly defined algebraic plane curves , 2002, Comput. Aided Geom. Des..

[5]  Yufu Chen,et al.  Finding the topology of implicitly defined two algebraic plane curves , 2012, J. Syst. Sci. Complex..

[6]  Scott McCallum,et al.  A Polynomial-Time Algorithm for the Topological Type of a Real Algebraic Curve , 1984, J. Symb. Comput..

[7]  Xiao-Shan Gao,et al.  Determining the Topology of Real Algebraic Surfaces , 2005, IMA Conference on the Mathematics of Surfaces.

[8]  Bernard Mourrain,et al.  On the computation of the topology of a non-reduced implicit space curve , 2008, ISSAC '08.

[9]  Bernard Mourrain,et al.  Topology and arrangement computation of semi-algebraic planar curves , 2008, Comput. Aided Geom. Des..

[10]  Michael Sagraloff,et al.  Arrangement computation for planar algebraic curves , 2011, SNC '11.

[11]  Bernard Mourrain,et al.  On the isotopic meshing of an algebraic implicit surface , 2012, J. Symb. Comput..

[12]  Zhonggang Zeng,et al.  Multiple zeros of nonlinear systems , 2011, Math. Comput..

[13]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[14]  Jin-San Cheng,et al.  On the Topology and Isotopic Meshing of Plane Algebraic Curves , 2020, J. Syst. Sci. Complex..

[15]  H. Hong An efficient method for analyzing the topology of plane real algebraic curves , 1996 .

[16]  Fabrice Rouillier,et al.  Solving bivariate systems using Rational Univariate Representations , 2016, J. Complex..

[17]  Xiao-Shan Gao,et al.  Rational quadratic approximation to real algebraic curves , 2004, Comput. Aided Geom. Des..

[18]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[19]  Jin-San Cheng,et al.  Certified rational parametric approximation of real algebraic space curves with local generic position method , 2012, J. Symb. Comput..

[20]  Xiao-Shan Gao,et al.  Root isolation for bivariate polynomial systems with local generic position method , 2009, ISSAC '09.

[21]  Kai Jin,et al.  A generic position based method for real root isolation of zero-dimensional polynomial systems , 2013, J. Symb. Comput..

[22]  M'hammed El Kahoui,et al.  Computation of the Dual of a Plane Projective Curve , 2002, J. Symb. Comput..

[23]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[24]  Michael Sagraloff,et al.  On the complexity of solving a bivariate polynomial system , 2012, ISSAC.

[25]  Kai Jin,et al.  Finding a Deterministic Generic Position for an Algebraic Space Curve , 2014, CASC.

[26]  Victor Y. Pan,et al.  On the boolean complexity of real root refinement , 2013, ISSAC '13.

[27]  M'hammed El Kahoui,et al.  Topology of real algebraic space curves , 2008, J. Symb. Comput..

[28]  Fabrice Rouillier,et al.  Rational univariate representations of bivariate systems and applications , 2013, ISSAC '13.

[29]  Michael Kerber,et al.  Exact and efficient 2D-arrangements of arbitrary algebraic curves , 2008, SODA '08.

[30]  Michael Sagraloff,et al.  When Newton meets Descartes: a simple and fast algorithm to isolate the real roots of a polynomial , 2011, ISSAC.

[31]  J. Rafael Sendra,et al.  Computation of the topology of real algebraic space curves , 2005, J. Symb. Comput..

[32]  Kai Jin,et al.  Isotopic epsilon-meshing of real algebraic space curves , 2014, SNC.

[33]  Maurice Mignotte,et al.  Mathematics for computer algebra , 1991 .

[34]  Michael Sagraloff,et al.  A worst-case bound for topology computation of algebraic curves , 2011, J. Symb. Comput..

[35]  Michael Kerber,et al.  Fast and exact geometric analysis of real algebraic plane curves , 2007, ISSAC '07.

[36]  Laureano González-Vega,et al.  An Improved Upper Complexity Bound for the Topology Computation of a Real Algebraic Plane Curve , 1996, J. Complex..

[37]  Ioannis Z. Emiris,et al.  On the asymptotic and practical complexity of solving bivariate systems over the reals , 2009, J. Symb. Comput..