Reductions of integrable equations on A.III-type symmetric spaces
暂无分享,去创建一个
Vladimir S. Gerdjikov | V. Gerdjikov | Alexander V. Mikhailov | Tihomir I. Valchev | A. Mikhailov | T. Valchev
[1] A. V. Mikhaĭlov,et al. Integrability of the two-dimensional generalization of Toda chain , 1979 .
[2] A. Mikhailov,et al. The reduction problem and the inverse scattering method , 1981 .
[3] A. Perelomov,et al. Two-dimensional generalized Toda lattice , 1981 .
[4] Reduction Groups and Automorphic Lie Algebras , 2004, math-ph/0407048.
[5] Gaetano Vilasi,et al. Integrable Hamiltonian Hierarchies , 2009 .
[6] J. Sanders,et al. On the Classification of Automorphic Lie Algebras , 2009, 0912.1697.
[7] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[8] Gaetano Vilasi,et al. Integrable Hamiltonian Hierarchies: Spectral and Geometric Methods , 2008 .
[9] A. Mikhailov,et al. Reductions of integrable equations: dihedral group , 2004, nlin/0404013.
[10] V. Sokolov,et al. Multicomponent generalization of the hierarchy of the Landau-Lifshitz equation , 2000 .
[11] A. Mikhailov. The Landau-Lifschitz equation and the Riemann boundary problem on a torus , 1982 .
[12] V. V. Sokolov,et al. Lie algebras and equations of Korteweg-de Vries type , 1985 .