A new approach to the realization of low-sensitivity IIR digital filters

A new implementation of an IIR digital filter transfer function is presented that is structurally passive and, hence, has extremely low pass-band sensitivity. The structure is based on a simple parallel interconnection of two all-pass sections, with each section implemented in a structurally lossless manner. The structure shares a number of properties in common with wave lattice digital filters. Computer simulation results verifying the low-sensitivity feature are included, along with results on roundoff noise/dynamic range interaction. A large number of alternatives is available for the implementation of the all-pass sections, giving rise to the well-known wave lattice digital filters as a specific instance of the implementation.

[1]  S. Mitra,et al.  Digital all-pass networks , 1974 .

[2]  W. Wegener,et al.  On the design of wave digital lattice filters with short coefficient word lengths and optimal dynamic range , 1978 .

[3]  H. J. De Man,et al.  Compact NMOS building blocks and a methodology for dedicated digital filter applications , 1983 .

[4]  Patrick Dewilde,et al.  Orthogonal cascade realization of real multiport digital filters , 1980 .

[5]  R. Crochiere Digital ladder structures and coefficient sensitivity , 1972 .

[6]  A. Fettweis,et al.  Wave digital lattice filters , 1974 .

[7]  A. Constantinides,et al.  An Efficient and Modular Transmultiplexer Design , 1982, IEEE Trans. Commun..

[8]  Josef A. Nossek,et al.  Reconstruction of signals after filtering and sampling rate reduction , 1984, IEEE Trans. Acoust. Speech Signal Process..

[9]  Sanjit K. Mitra,et al.  Very low sensitivity FIR filter implementation using 'structural passivity' concept , 1985 .

[10]  Sanjit K. Mitra,et al.  Passivity properties of low-sensitivity digital filter structures , 1985 .

[11]  Anthony G. Constantinides Alternative approach to design of wave digital filters , 1974 .

[12]  Thomas Kailath,et al.  Orthogonal digital filters for VLSI implementation , 1984 .

[13]  S. Mitra,et al.  Cascaded lattice realization of digital filters , 1977 .

[14]  Augustine H. Gray,et al.  Passive cascaded lattice digital filters , 1979, ICASSP.

[15]  Leonard T. Bruton,et al.  Transfer function synthesis using generalized doubly terminated two-pair networks , 1977 .

[16]  A. Gray,et al.  A normalized digital filter structure , 1975 .

[17]  Leland B. Jackson,et al.  On the interaction of roundoff noise and dynamic range in digital filters , 1970, Bell Syst. Tech. J..

[18]  Y. Lim,et al.  FIR filter design over a discrete powers-of-two coefficient space , 1983 .

[19]  Alfred Fettweis On sensitivity and roundoff noise in wave digital filters , 1974 .

[20]  P.P. Vaidyanathan,et al.  Low passband sensitivity digital filters: A generalized viewpoint and synthesis procedures , 1984, Proceedings of the IEEE.

[21]  Clifford T. Mullis,et al.  A modular and orthogonal digital filter structure for parallel processing , 1983, ICASSP.

[22]  R. Abraham,et al.  System analysis by digital computer , 1967 .

[23]  S. Mitra,et al.  On digital filter structures with low coefficient sensitivities , 1978, Proceedings of the IEEE.

[24]  Alfred Fettweis,et al.  Suppression of parasitic oscillations in wave digital filters , 1975 .

[25]  Rashid Ansari,et al.  A class of low-noise computationally efficient recursive digital filters with applications to sampling rate alterations , 1985, IEEE Trans. Acoust. Speech Signal Process..

[26]  A. Fettweis Pseudo-passivity, sensitivity, and stability of wave digital filters , 1972 .

[27]  A. Gray,et al.  Digital lattice and ladder filter synthesis , 1973 .

[28]  M.N.S. Swamy,et al.  A new type of wave digital filter , 1975 .

[29]  Ramesh C. Agarwal,et al.  New recursive digital filter structures having very low sensitivity and roundoff noise , 1975 .

[30]  Lajos Gazsi,et al.  Explicit formulas for lattice wave digital filters , 1985 .