If I had a million neurons: Potential tests of cortico-hippocampal theories.

[1]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[2]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[3]  C. H. Vanderwolf,et al.  Hippocampal EEG and behavior: changes in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. , 1973, Behavioral biology.

[4]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[5]  J. Winson Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. , 1978, Science.

[6]  I. Whishaw Cholinergic receptor blockade in the rat impairs locale but not taxon strategies for place navigation in a swimming pool. , 1985, Behavioral neuroscience.

[7]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  P. Best,et al.  Place cells and silent cells in the hippocampus of freely-behaving rats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  T. J. Walsh,et al.  Intraseptal administration of muscimol produces dose-dependent memory impairments in the rat. , 1989, Behavioral and neural biology.

[10]  R. Llinás,et al.  Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II , 1989, Nature.

[11]  D. Amaral,et al.  Neurons, numbers and the hippocampal network. , 1990, Progress in brain research.

[12]  J. D. McGaugh,et al.  Muscimol injections in the medial septum impair spatial learning , 1990, Brain Research.

[13]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  B. McNaughton,et al.  Hebb-Marr networks and the neurobiological representation of action in space. , 1990 .

[15]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[16]  L. Squire,et al.  Damage to the perirhinal cortex exacerbates memory impairment following lesions to the hippocampal formation , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  A. Alonso,et al.  Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. , 1993, Journal of neurophysiology.

[18]  D. Olton,et al.  Local modulation of basal forebrain: effects on working and reference memory , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.

[20]  K. Jeffery,et al.  Medial septal control of theta-correlated unit firing in the entorhinal cortex of awake rats. , 1995, Neuroreport.

[21]  J. Taube Head direction cells recorded in the anterior thalamic nuclei of freely moving rats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[23]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[24]  B. McNaughton,et al.  Replay of Neuronal Firing Sequences in Rat Hippocampus During Sleep Following Spatial Experience , 1996, Science.

[25]  B T Hyman,et al.  H. M.’s Medial Temporal Lobe Lesion: Findings from Magnetic Resonance Imaging , 1997, The Journal of Neuroscience.

[26]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[27]  N Burgess,et al.  Place cells, navigational accuracy, and the human hippocampus. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  J. O’Keefe,et al.  Modeling place fields in terms of the cortical inputs to the hippocampus , 2000, Hippocampus.

[29]  Neil Burgess,et al.  Predictions derived from modelling the hippocampal role in navigation , 2000, Biological Cybernetics.

[30]  Michael E. Hasselmo,et al.  A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning , 2002, Neural Computation.

[31]  J. White,et al.  Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. , 2002, Journal of neurophysiology.

[32]  Albert K. Lee,et al.  Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep , 2002, Neuron.

[33]  U. Heinemann,et al.  Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold , 2004, The Journal of physiology.

[34]  J. Gaztelu,et al.  Changes in hippocampal cell discharge patterns and theta rhythm spectral properties as a function of walking velocity in the guinea pig , 1996, Experimental Brain Research.

[35]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[36]  Ariane S Etienne,et al.  Path integration in mammals , 2004, Hippocampus.

[37]  B. McNaughton,et al.  The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats , 2004, Experimental Brain Research.

[38]  B. McNaughton,et al.  Self‐motion and the origin of differential spatial scaling along the septo‐temporal axis of the hippocampus , 2005, Hippocampus.

[39]  A. Blokland,et al.  Effects of intra-hippocampal scopolamine injections in a repeated spatial acquisition task in the rat , 2005, Psychopharmacology.

[40]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[41]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[42]  Andreas Schulze-Bonhage,et al.  Human neocortical oscillations exhibit theta phase differences between encoding and retrieval , 2006, NeuroImage.

[43]  M. Hasselmo The role of acetylcholine in learning and memory , 2006, Current Opinion in Neurobiology.

[44]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[45]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[46]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[47]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[48]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[49]  K. Jeffery,et al.  Experience-dependent rescaling of entorhinal grids , 2007, Nature Neuroscience.

[50]  Marc W Howard,et al.  Gradual Changes in Hippocampal Activity Support Remembering the Order of Events , 2007, Neuron.

[51]  Douglas G. Wallace,et al.  Medial septum lesions disrupt exploratory trip organization: Evidence for septohippocampal involvement in dead reckoning , 2007, Physiology & Behavior.

[52]  G. Buzsáki,et al.  Forward and reverse hippocampal place-cell sequences during ripples , 2007, Nature Neuroscience.

[53]  Lisa M. Giocomo,et al.  Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing , 2007, Science.

[54]  Adam Johnson,et al.  Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007, The Journal of Neuroscience.

[55]  Paul F. M. J. Verschure,et al.  A Model of Grid Cells Based on a Twisted Torus Topology , 2007, Int. J. Neural Syst..

[56]  Eric A. Zilli,et al.  Hippocampal CA1 spiking during encoding and retrieval: Relation to theta phase , 2007, Neurobiology of Learning and Memory.

[57]  M. Wilson,et al.  Coordinated memory replay in the visual cortex and hippocampus during sleep , 2007, Nature Neuroscience.

[58]  Gordon Wyeth,et al.  Mapping a Suburb With a Single Camera Using a Biologically Inspired SLAM System , 2008, IEEE Transactions on Robotics.

[59]  J. Knierim,et al.  Influence of boundary removal on the spatial representations of the medial entorhinal cortex , 2008, Hippocampus.

[60]  Michael E. Hasselmo,et al.  Time Constants of h Current in Layer II Stellate Cells Differ along the Dorsal to Ventral Axis of Medial Entorhinal Cortex , 2008, The Journal of Neuroscience.

[61]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[62]  H. T. Blair,et al.  Conversion of a phase‐ to a rate‐coded position signal by a three‐stage model of theta cells, grid cells, and place cells , 2008, Hippocampus.

[63]  Rita Zemankovics,et al.  The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum , 2008, The Journal of physiology.

[64]  M. Hasselmo Grid cell mechanisms and function: Contributions of entorhinal persistent spiking and phase resetting , 2008, Hippocampus.

[65]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[66]  Michael E Hasselmo,et al.  Mglur-dependent Persistent Firing in Entorhinal Cortex Layer Iii Neurons , 2022 .

[67]  John A White,et al.  Artificial Synaptic Conductances Reduce Subthreshold Oscillations and Periodic Firing in Stellate Cells of the Entorhinal Cortex , 2008, The Journal of Neuroscience.

[68]  J. O’Keefe,et al.  Grid cells and theta as oscillatory interference: Electrophysiological data from freely moving rats , 2008, Hippocampus.

[69]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[70]  Edvard I Moser,et al.  A metric for space , 2008, Hippocampus.

[71]  N. Burgess Grid cells and theta as oscillatory interference: Theory and predictions , 2008, Hippocampus.

[72]  J. O’Keefe,et al.  Environmental novelty is signaled by reduction of the hippocampal theta frequency , 2008, Hippocampus.

[73]  Michael E Hasselmo,et al.  Persistent Firing Supported by an Intrinsic Cellular Mechanism in a Component of the Head Direction System , 2009, The Journal of Neuroscience.

[74]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[75]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[76]  Matthew A. Wilson,et al.  Hippocampal Replay of Extended Experience , 2009, Neuron.

[77]  Michael E Hasselmo,et al.  Knock-Out of HCN1 Subunit Flattens Dorsal–Ventral Frequency Gradient of Medial Entorhinal Neurons in Adult Mice , 2009, The Journal of Neuroscience.

[78]  Jonathan R. Whitlock,et al.  Fragmentation of grid cell maps in a multicompartment environment , 2009, Nature Neuroscience.

[79]  Yoram Burak,et al.  Accurate Path Integration in Continuous Attractor Network Models of Grid Cells , 2008, PLoS Comput. Biol..

[80]  Janet Wiles,et al.  Solving Navigational Uncertainty Using Grid Cells on Robots , 2010, PLoS Comput. Biol..

[81]  M. Hasselmo,et al.  Coupled Noisy Spiking Neurons as Velocity-Controlled Oscillators in a Model of Grid Cell Spatial Firing , 2010, The Journal of Neuroscience.

[82]  Thackery I. Brown,et al.  Which Way Was I Going? Contextual Retrieval Supports the Disambiguation of Well Learned Overlapping Navigational Routes , 2010, The Journal of Neuroscience.

[83]  Irina Erchova,et al.  The Range of Intrinsic Frequencies Represented by Medial Entorhinal Cortex Stellate Cells Extends with Age , 2010, The Journal of Neuroscience.

[84]  Lisa M. Giocomo,et al.  Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex. , 2010, Journal of neurophysiology.

[85]  Lin Tian,et al.  Functional imaging of hippocampal place cells at cellular resolution during virtual navigation , 2010, Nature Neuroscience.

[86]  H. Eichenbaum,et al.  Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events , 2011, Neuron.

[87]  Ashley N. Linder,et al.  The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced Theta Oscillations , 2011, Science.

[88]  Lauren L. Long,et al.  Septotemporal variation in dynamics of theta: speed and habituation. , 2011, Journal of neurophysiology.

[89]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[90]  J. T. Erichsen,et al.  Theta-Modulated Head Direction Cells in the Rat Anterior Thalamus , 2011, The Journal of Neuroscience.

[91]  Mark P. Brandon,et al.  Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning , 2011, Science.

[92]  Lisa M. Giocomo,et al.  Grid Cells Use HCN1 Channels for Spatial Scaling , 2011, Cell.

[93]  M. Yartsev,et al.  Grid cells without theta oscillations in the entorhinal cortex of bats , 2011, Nature.

[94]  H. T. Blair,et al.  Cosine Directional Tuning of Theta Cell Burst Frequencies: Evidence for Spatial Coding by Oscillatory Interference , 2011, The Journal of Neuroscience.

[95]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[96]  James G. Heys,et al.  Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells , 2012, Front. Neural Circuits.

[97]  Michael E. Hasselmo,et al.  Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue , 2012, PLoS Comput. Biol..

[98]  J. O’Keefe,et al.  Grid cell firing patterns signal environmental novelty by expansion , 2012, Proceedings of the National Academy of Sciences.

[99]  Matthew F. Nolan,et al.  Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields , 2012, Front. Neural Circuits.

[100]  Michael E Hasselmo,et al.  Neuromodulation of Ih in Layer II Medial Entorhinal Cortex Stellate Cells: A Voltage-Clamp Study , 2012, The Journal of Neuroscience.

[101]  Michael E Hasselmo,et al.  Voltage dependence of subthreshold resonance frequency in layer ii of medial entorhinal cortex , 2012, Hippocampus.

[102]  Uğur M Erdem,et al.  A goal‐directed spatial navigation model using forward trajectory planning based on grid cells , 2012, The European journal of neuroscience.

[103]  Thomas J. Wills,et al.  The abrupt development of adult-like grid cell firing in the medial entorhinal cortex , 2012, Front. Neural Circuits.

[104]  Lisa M. Giocomo,et al.  Neural Circuits Original Research Article a Model Combining Oscillations and Attractor Dynamics for Generation of Grid Cell Firing , 2012 .

[105]  M. Witter,et al.  Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex , 2012, Hippocampus.

[106]  Michael E. Hasselmo,et al.  Modeling the influence of optic flow on grid cell firing in the absence of other cues1 , 2012, Journal of Computational Neuroscience.

[107]  Benjamin A. Dunn,et al.  Grid cells require excitatory drive from the hippocampus , 2013, Nature Neuroscience.

[108]  Mark P. Brandon,et al.  Segregation of cortical head direction cell assemblies on alternating theta cycles , 2013, Nature Neuroscience.

[109]  Monty A Escabí,et al.  Ketamine disrupts theta synchrony across the septotemporal axis of the CA1 region of hippocampus. , 2013, Journal of neurophysiology.

[110]  Benjamin A. Dunn,et al.  Recurrent inhibitory circuitry as a mechanism for grid formation , 2013, Nature Neuroscience.

[111]  D. Tank,et al.  Membrane potential dynamics of grid cells , 2013, Nature.

[112]  Ehren L. Newman,et al.  Phase coding by grid cells in unconstrained environments: two‐dimensional phase precession , 2013, The European journal of neuroscience.

[113]  Motoharu Yoshida,et al.  Long‐lasting intrinsic persistent firing in rat CA1 pyramidal cells: A possible mechanism for active maintenance of memory , 2013, Hippocampus.

[114]  M. Häusser,et al.  Cellular mechanisms of spatial navigation in the medial entorhinal cortex , 2013, Nature Neuroscience.

[115]  Benjamin J. Kraus,et al.  Hippocampal “Time Cells”: Time versus Path Integration , 2013, Neuron.

[116]  M. V. Rossum,et al.  Feedback Inhibition Enables Theta-Nested Gamma Oscillations and Grid Firing Fields , 2013, Neuron.

[117]  Katherine R. Sherrill,et al.  Hippocampus and Retrosplenial Cortex Combine Path Integration Signals for Successful Navigation , 2013, The Journal of Neuroscience.

[118]  P. Bressloff,et al.  Entorhinal Stellate Cells Show Preferred Spike Phase-Locking to Theta Inputs That Is Enhanced by Correlations in Synaptic Activity , 2013, The Journal of Neuroscience.

[119]  C. Barry,et al.  Specific evidence of low-dimensional continuous attractor dynamics in grid cells , 2013, Nature Neuroscience.

[120]  James G. Heys,et al.  Bat and Rat Neurons Differ in Theta-Frequency Resonance Despite Similar Coding of Space , 2013, Science.

[121]  Thackery I. Brown,et al.  A High‐resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory , 2014, Hippocampus.

[122]  J. T. Erichsen,et al.  Nucleus reuniens of the thalamus contains head direction cells , 2014, eLife.

[123]  Michael N. Economo,et al.  Imaging Activity in Neurons and Glia with a Polr2a-Based and Cre-Dependent GCaMP5G-IRES-tdTomato Reporter Mouse , 2014, Neuron.

[124]  N. Burgess,et al.  A Hybrid Oscillatory Interference/Continuous Attractor Network Model of Grid Cell Firing , 2014, The Journal of Neuroscience.

[125]  M. Hasselmo Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[126]  M. Hasselmo,et al.  A biologically inspired hierarchical goal directed navigation model , 2014, Journal of Physiology-Paris.

[127]  Jason Cong,et al.  Oscillatory neurocomputing with ring attractors: a network architecture for mapping locations in space onto patterns of neural synchrony , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[128]  Michael Milford,et al.  Principles of goal-directed spatial robot navigation in biomimetic models , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[129]  Qian Du,et al.  A Unified Mathematical Framework for Coding Time, Space, and Sequences in the Hippocampal Region , 2014, The Journal of Neuroscience.

[130]  James G. Heys,et al.  The Functional Micro-organization of Grid Cells Revealed by Cellular-Resolution Imaging , 2014, Neuron.

[131]  Michael E. Hasselmo,et al.  Grid cell firing patterns may arise from feedback interaction between intrinsic rebound spiking and transverse traveling waves with multiple heading angles , 2014, Front. Syst. Neurosci..

[132]  Ehren L. Newman,et al.  Grid cell spatial tuning reduced following systemic muscarinic receptor blockade , 2014, Hippocampus.

[133]  Mark P. Brandon,et al.  Head direction is coded more strongly than movement direction in a population of entorhinal neurons , 2015, Brain Research.

[134]  Daniel A. Dombeck,et al.  Calcium transient prevalence across the dendritic arbor predicts place field properties , 2014, Nature.

[135]  Michael E. Hasselmo,et al.  A hierarchical model of goal directed navigation selects trajectories in a visual environment , 2015, Neurobiology of Learning and Memory.

[136]  Marc W Howard,et al.  A Simple biophysically plausible model for long time constants in single neurons , 2015, Hippocampus.

[137]  Marc W Howard,et al.  A distributed representation of internal time. , 2015, Psychological review.