Categorical linearly ordered structures

[1]  M. Rabin Computable algebra, general theory and theory of computable fields. , 1960 .

[2]  A. I. Mal'tsev CONSTRUCTIVE ALGEBRAS I , 1961 .

[3]  Jeffrey B. Remmel Recursively categorical linear orderings , 1981 .

[4]  C. Ash,et al.  Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees , 1986 .

[5]  Rodney G. Downey,et al.  Orderings with th jump degree 0 , 1992 .

[6]  S. Goncharov Countable Boolean Algebras and Decidability , 1997 .

[7]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[8]  Arkadii M. Slinko,et al.  Degree spectra and computable dimensions in algebraic structures , 2002, Ann. Pure Appl. Log..

[9]  S. Goncharov,et al.  Computable Structure and Non-Structure Theorems , 2002 .

[10]  Steffen Lempp,et al.  The computable dimension of ordered abelian groups , 2003 .

[11]  Rodney G. Downey,et al.  THE ISOMORPHISM PROBLEM FOR TORSION-FREE ABELIAN GROUPS IS ANALYTIC COMPLETE. , 2008 .

[12]  Ekaterina B. Fokina,et al.  Degrees of categoricity of computable structures , 2010, Arch. Math. Log..

[13]  Alexander G. Melnikov,et al.  Computable Ordered Abelian Groups and Fields , 2010, CiE.

[14]  Russell Miller An introduction to computable model theory on groups and fields , 2011, Groups Complex. Cryptol..

[15]  A. Montalbán,et al.  A computability theoretic equivalent to Vaught’s conjecture , 2012, 1206.5682.

[16]  Kyle Riggs The decomposability problem for torsion-free abelian groups is analytic-complete , 2013 .

[17]  Victor A. Ocasio Computability in the class of Real Closed Fields , 2014 .

[18]  Rodney G. Downey,et al.  Computable completely decomposable groups , 2014 .

[19]  MATTHEW HARRISON-TRAINOR,et al.  Independence in computable algebra , 2014, 1409.7747.

[20]  Rodney G. Downey,et al.  The complexity of computable categoricity , 2015 .

[21]  A. N. Frolov Effective Categoricity of Computable Linear Orderings , 2015 .

[22]  Matthew Harrison-Trainor,et al.  Computable Functors and Effective interpretability , 2017, J. Symb. Log..

[23]  Alexander G. Melnikov,et al.  On a question of Kalimullin , 2018 .

[24]  Matthew Harrison-Trainor,et al.  AUTOMATIC AND POLYNOMIAL-TIME ALGEBRAIC STRUCTURES , 2019, The Journal of Symbolic Logic.