Categorical linearly ordered structures
暂无分享,去创建一个
[1] M. Rabin. Computable algebra, general theory and theory of computable fields. , 1960 .
[2] A. I. Mal'tsev. CONSTRUCTIVE ALGEBRAS I , 1961 .
[3] Jeffrey B. Remmel. Recursively categorical linear orderings , 1981 .
[4] C. Ash,et al. Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees , 1986 .
[5] Rodney G. Downey,et al. Orderings with th jump degree 0 , 1992 .
[6] S. Goncharov. Countable Boolean Algebras and Decidability , 1997 .
[7] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[8] Arkadii M. Slinko,et al. Degree spectra and computable dimensions in algebraic structures , 2002, Ann. Pure Appl. Log..
[9] S. Goncharov,et al. Computable Structure and Non-Structure Theorems , 2002 .
[10] Steffen Lempp,et al. The computable dimension of ordered abelian groups , 2003 .
[11] Rodney G. Downey,et al. THE ISOMORPHISM PROBLEM FOR TORSION-FREE ABELIAN GROUPS IS ANALYTIC COMPLETE. , 2008 .
[12] Ekaterina B. Fokina,et al. Degrees of categoricity of computable structures , 2010, Arch. Math. Log..
[13] Alexander G. Melnikov,et al. Computable Ordered Abelian Groups and Fields , 2010, CiE.
[14] Russell Miller. An introduction to computable model theory on groups and fields , 2011, Groups Complex. Cryptol..
[15] A. Montalbán,et al. A computability theoretic equivalent to Vaught’s conjecture , 2012, 1206.5682.
[16] Kyle Riggs. The decomposability problem for torsion-free abelian groups is analytic-complete , 2013 .
[17] Victor A. Ocasio. Computability in the class of Real Closed Fields , 2014 .
[18] Rodney G. Downey,et al. Computable completely decomposable groups , 2014 .
[19] MATTHEW HARRISON-TRAINOR,et al. Independence in computable algebra , 2014, 1409.7747.
[20] Rodney G. Downey,et al. The complexity of computable categoricity , 2015 .
[21] A. N. Frolov. Effective Categoricity of Computable Linear Orderings , 2015 .
[22] Matthew Harrison-Trainor,et al. Computable Functors and Effective interpretability , 2017, J. Symb. Log..
[23] Alexander G. Melnikov,et al. On a question of Kalimullin , 2018 .
[24] Matthew Harrison-Trainor,et al. AUTOMATIC AND POLYNOMIAL-TIME ALGEBRAIC STRUCTURES , 2019, The Journal of Symbolic Logic.