Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.

[1]  Andrew P Worth,et al.  A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles , 2011, Nanotoxicology.

[2]  T. Puzyn,et al.  Toward the development of "nano-QSARs": advances and challenges. , 2009, Small.

[3]  Jerzy Leszczynski,et al.  Predicting water solubility of congeners: chloronaphthalenes--a case study. , 2009, Journal of hazardous materials.

[4]  Peng Wang,et al.  In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. , 2009, The Science of the total environment.

[5]  M. Wiesner,et al.  Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. , 2009, Environmental pollution.

[6]  Igor Linkov,et al.  Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop , 2008, Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology.

[7]  Armand Masion,et al.  Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. , 2008, Environmental science & technology.

[8]  Tomasz Puzyn,et al.  Calculation of Quantum-Mechanical Descriptors for QSPR at the DFT Level: Is It Necessary? , 2008, J. Chem. Inf. Model..

[9]  A. Neal,et al.  What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? , 2008, Ecotoxicology.

[10]  Anne Kahru,et al.  Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. , 2008, Chemosphere.

[11]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[12]  Jerzy Leszczynski,et al.  Predicting water solubility and octanol water partition coefficient for carbon nanotubes based on the chiral vector , 2007, Comput. Biol. Chem..

[13]  Dae Hong Jeong,et al.  Antimicrobial effects of silver nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[14]  K. Wanner,et al.  Methods and Principles in Medicinal Chemistry , 2007 .

[15]  J. Song,et al.  Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli , 2007, Applied and Environmental Microbiology.

[16]  J. Leszczynski,et al.  A new approach to the characterization of nanomaterials : Predicting Young's modulus by correlation weighting of nanomaterials codes , 2006 .

[17]  Pedro J J Alvarez,et al.  Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. , 2006, Water research.

[18]  John H. Xin,et al.  Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities , 2005 .

[19]  K. Dreher,et al.  Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. , 2003, Toxicological sciences : an official journal of the Society of Toxicology.

[20]  Paola Gramatica,et al.  Introduction General Considerations , 2022 .

[21]  M. Cronin,et al.  Pitfalls in QSAR , 2003 .

[22]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[23]  Alexander B. Pacheco Introduction to Computational Chemistry , 2011 .