Rational Design of Organotin Polyesters

Large dielectric constant and band gap are essential for insulating materials used in applications such as capacitors, transistors and photovoltaics. Of the most common polymers utilized for these applications, polyvinyldiene fluoride (PVDF) offers a good balance between dielectric constant, >10, and band gap, 6 eV, but suffers from being a ferroelectric material. Herein, we investigate a series of aliphatic organotin polymers, p[DMT(CH2)n], to increase the dipolar and ionic part of the dielectric constant while maintaining a large band gap. We model these polymers by performing first-principles calculations based on density functional theory (DFT), to predict their structures, electronic and total dielectric constants and energy band gaps. The modeling and experimental values show strong correlation, in which the polymers exhibit both high dielectric constant, ≥5.3, and large band gap, ≥4.7 eV with one polymer displaying a dielectric constant of 6.6 and band gap of 6.7 eV. From our work, we can identify ...

[1]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[2]  Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites , 2008 .

[3]  Sanguthevar Rajasekaran,et al.  Accelerating materials property predictions using machine learning , 2013, Scientific Reports.

[4]  G. Plazzogna,et al.  The preparation and properties of some trivinyltin carboxylates , 1970 .

[5]  D. Ceresoli,et al.  Trapping of excitons at chemical defects in polyethylene. , 2004, The Journal of chemical physics.

[6]  T. Goodson,et al.  High dielectric hyperbranched polyaniline materials. , 2006, Journal of Physical Chemistry B.

[7]  Rampi Ramprasad,et al.  Structure–property relationship of polyimides based on pyromellitic dianhydride and short‐chain aliphatic diamines for dielectric material applications , 2013 .

[8]  Akira Watanabe,et al.  Fabrication of highly refractive, transparent BaTiO3/poly(methyl methacrylate) composite films with high permittivities , 2011 .

[9]  Ghanshyam Pilania,et al.  Rational design of all organic polymer dielectrics , 2014, Nature Communications.

[10]  S. Goedecker,et al.  Low-energy polymeric phases of alanates. , 2012, Physical review letters.

[11]  T. Conway,et al.  Electromagnetic aircraft launch system-EMALS , 1995 .

[12]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[13]  T. C. Mike Chung,et al.  Functionalization of Polypropylene with High Dielectric Properties: Applications in Electric Energy Storage , 2012 .

[14]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[15]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[16]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[17]  Lei Zhu,et al.  Crystal Orientation Effect on Electric Energy Storage in Poly(vinylidene fluoride-co-hexafluoropropylene) Copolymers , 2010 .

[18]  C. Kittel Introduction to solid state physics , 1954 .

[19]  John C. Fothergill,et al.  Electrical degradation and breakdown in polymers , 1992 .

[20]  N. Camaioni,et al.  Pushing the Envelope of the Intrinsic Limitation of Organic Solar Cells. , 2013, The journal of physical chemistry letters.

[21]  G. Plazzogna,et al.  Electrochemical preparation of trimethyltin carboxylates , 1969 .

[22]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[23]  T. Chung,et al.  Functional Polyolefins for Energy Applications , 2013 .

[24]  S.D. Sudhoff,et al.  Electric ship drive and power system , 2000, Conference Record of the 2000 Twenty-fourth International Power Modulator Symposium.

[25]  M. Hersam,et al.  Hybrid gate dielectric materials for unconventional electronic circuitry. , 2014, Accounts of chemical research.

[26]  Stefan Goedecker,et al.  Thermodynamic stability of alkali-metal-zinc double-cation borohydrides at low temperatures , 2013, 1304.4088.

[27]  Paul M. Hergenrother,et al.  The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview , 2003 .

[28]  Artem R. Oganov,et al.  Modern methods of crystal structure prediction , 2011 .

[29]  Qing Wang,et al.  High-temperature poly(phthalazinone ether ketone) thin films for dielectric energy storage. , 2010, ACS applied materials & interfaces.

[30]  C. Carraher Comparative infrared spectroscopy of group IV a polyesters and polyoxides , 1973 .

[31]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  C. C. Wang,et al.  New Group IV Chemical Motifs for Improved Dielectric Permittivity of Polyethylene , 2013, J. Chem. Inf. Model..

[34]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[35]  Lei Zhu,et al.  Polymer nanocomposites for electrical energy storage , 2011 .

[36]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[37]  Gabriel M. Rebeiz RF MEMS: Theory, Design and Technology , 2003 .

[38]  Arun Mannodi-Kanakkithodi,et al.  Poly(dimethyltin glutarate) as a Prospective Material for High Dielectric Applications , 2015, Advanced materials.

[39]  Rampi Ramprasad,et al.  Computational strategies for polymer dielectrics design , 2014 .

[40]  S. Ducharme,et al.  Comparison of the theoretical and experimental band structure of poly(vinylidene fluoride) crystal , 2003 .

[41]  Y. Ozaki,et al.  Molecular Structure, Crystallinity and Morphology of Polyethylene/Polypropylene Blends Studied by Raman Mapping, Scanning Electron Microscopy, Wide Angle X-Ray Diffraction, and Differential Scanning Calorimetry , 2006 .

[42]  G. Plazzogna,et al.  The preparation and properties of some allyltin carboxylates:R3SnOOCR′ (R′ = CH3, CH2Cl), R2Sn(OOCR′)2 (R′ = CH2Cl, CHCl2) and [R2Sn(OOCR′)]2O (R′ = CH2Cl, CHCl2, CCl3) , 1972 .

[43]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[44]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[45]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[46]  R. Ramprasad,et al.  An atomistic description of the high-field degradation of dielectric polyethylene. , 2013, The Journal of chemical physics.

[47]  G. Plazzogna,et al.  A new method of preparing a soluble form of trimethyltin acetate , 1969 .

[48]  Kuizhan Shao,et al.  Organotin(IV) carboxylates based on amide carboxylic acids: Syntheses, crystal structures and characterizations , 2013 .