Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators.

The performance of colloidal CuInS2/CdS nanocrystals as phosphors for full-spectrum luminescent solar concentrators has been examined. Their combination of large solar absorption, high photoluminescence quantum yields, and only moderate reabsorption produces the highest projected flux gains of any nanocrystal luminophore to date.

[1]  Bryce S. Richards,et al.  Theoretical comparison of cylindrical and square-planar luminescent solar concentrators , 2007 .

[2]  J. S. Batchelder,et al.  Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. , 1979, Applied optics.

[3]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[4]  Michael G Debije,et al.  Progress in phosphors and filters for luminescent solar concentrators. , 2012, Optics express.

[5]  S. Bals,et al.  Luminescent CuInS2 quantum dots by partial cation exchange in Cu2- xS nanocrystals , 2015 .

[6]  Wilfried van Sark,et al.  Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators , 2011 .

[7]  K. Chung,et al.  The photoluminescence of CuInS2 nanocrystals: effect of non-stoichiometry and surface modification , 2012 .

[8]  Renata Reisfeld,et al.  Photostable solar concentrators based on fluorescent glass films , 1994 .

[9]  J. Bloem,et al.  Luminescence of CuInS2 , 1982 .

[10]  Daniel R. Gamelin,et al.  Zero-reabsorption doped-nanocrystal luminescent solar concentrators. , 2014, ACS nano.

[11]  T. Omata,et al.  Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System , 2006 .

[12]  Xiaogang Peng,et al.  Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. , 2009, Journal of the American Chemical Society.

[13]  R. Inman,et al.  Cylindrical luminescent solar concentrators with near-infrared quantum dots. , 2011, Optics express.

[14]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .

[15]  M. El‐Mansy,et al.  Performance evaluation of thin-film solar concentrators for greenhouse applications , 2007 .

[16]  Sergio Brovelli,et al.  Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix , 2014, Nature Photonics.

[17]  J. Rogers,et al.  Nonimaging Optical Gain in Luminescent Concentration through Photonic Control of Emission Etendue , 2014 .

[18]  Moungi G Bawendi,et al.  Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. , 2014, Nano letters.

[19]  J. Rogers,et al.  Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides. , 2011, Nature communications.

[20]  F. Purcell-Milton,et al.  Quantum dots for Luminescent Solar Concentrators , 2012 .

[21]  V. Klimov,et al.  Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. , 2011, Journal of the American Chemical Society.

[22]  Roland Winston,et al.  Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators , 2010 .

[23]  Yuan Yao,et al.  Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. , 2014, ACS nano.

[24]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[25]  Wilfried van Sark,et al.  Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots , 2013 .

[26]  D. Gamelin,et al.  Nanocrystals for luminescent solar concentrators. , 2015, Nano letters.