Can social tagged images aid concept-based video search?

This paper seeks to unravel whether commonly available social tagged images can be exploited as a training resource for concept-based video search. Since social tags are known to be ambiguous, overly personalized, and often error prone, we place special emphasis on the role of disambiguation. We present a systematic experimental study that evaluates concept detectors based on social tagged images, and their disambiguated versions, in three application scenarios: withindomain, cross-domain, and together with an interacting user. The results indicate that social tagged images can aid conceptbased video search indeed, especially after disambiguation and when used in an interactive video retrieval setting. These results open-up interesting avenues for future research.

[1]  A. Murat Tekalp,et al.  Shape similarity matching for query-by-example , 1998, Pattern Recognit..

[2]  Bernardo A. Huberman,et al.  The Structure of Collaborative Tagging Systems , 2005, ArXiv.

[3]  Jun Yang,et al.  (Un)Reliability of video concept detection , 2008, CIVR '08.

[4]  Marcel Worring,et al.  A Learned Lexicon-Driven Paradigm for Interactive Video Retrieval , 2007, IEEE Transactions on Multimedia.

[5]  Adrian Ulges,et al.  Identifying relevant frames in weakly labeled videos for training concept detectors , 2008, CIVR '08.

[6]  Rong Yan,et al.  Multi-Lingual Broadcast News Retrieval , 2006, TRECVID.

[7]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[9]  Scott Golder,et al.  Collaborative Tagging of Multimedia , 2008, IEEE Multimedia.

[10]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[11]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[13]  Krystyna K. Matusiak Towards user-centered indexing in digital image collections , 2006, OCLC Syst. Serv..

[14]  Kilian Q. Weinberger,et al.  Resolving tag ambiguity , 2008, ACM Multimedia.

[15]  Ian Witten,et al.  Data Mining , 2000 .

[16]  Shih-Fu Chang,et al.  Cross-domain learning methods for high-level visual concept classification , 2008, 2008 15th IEEE International Conference on Image Processing.

[17]  Ramin Zabih,et al.  Histogram refinement for content-based image retrieval , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[18]  Stéphane Ayache,et al.  Evaluation of active learning strategies for video indexing , 2007, Signal Process. Image Commun..

[19]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[20]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[21]  Marieke Guy,et al.  Folksonomies: Tidying Up Tags? , 2006, D Lib Mag..

[22]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[23]  Don R. Hush,et al.  Query by image example: The CANDID approach , 1995 .

[24]  Martin Szummer,et al.  Indoor-outdoor image classification , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[25]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Rong Yan,et al.  Cross-domain video concept detection using adaptive svms , 2007, ACM Multimedia.

[27]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[28]  Takeo Kanade,et al.  Automatic generation of object recognition programs , 1988, Proc. IEEE.

[29]  Marcel Worring,et al.  Learning tag relevance by neighbor voting for social image retrieval , 2008, MIR '08.

[30]  Paul Over,et al.  TRECVID 2008 - Goals, Tasks, Data, Evaluation Mechanisms and Metrics , 2010, TRECVID.

[31]  Shih-Fu Chang,et al.  Columbia University’s Baseline Detectors for 374 LSCOM Semantic Visual Concepts , 2007 .

[32]  Amanda Spink,et al.  How are we searching the World Wide Web? A comparison of nine search engine transaction logs , 2006, Inf. Process. Manag..

[33]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[34]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[35]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[36]  Thomas S. Huang,et al.  Human face detection in a complex background , 1994, Pattern Recognit..

[37]  John R. Smith,et al.  IBM Research TRECVID-2009 Video Retrieval System , 2009, TRECVID.

[38]  Rong Yan,et al.  Can High-Level Concepts Fill the Semantic Gap in Video Retrieval? A Case Study With Broadcast News , 2007, IEEE Transactions on Multimedia.