Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps

Using 8-year global ionosphere maps (GIMs) of TEC products from the Jet Propulsion Laboratory (JPL), we make a statistical study on the morphology of the global ionospheric behaviors with respect to the geomagnetic disturbances. Results show that the behaviors of TEC during geomagnetic storm present clear seasonal and local time variations under geomagnetic control in a similar way as those of NmF2 (Field and Rishbeth, 1997). A negative phase of TEC occurs with high probability in the summer hemisphere and most prominent near the geomagnetic poles, while a positive phase is obvious in the winter hemisphere and in the far pole region. A negative storm effect toward lower latitudes tends to occur from post-midnight to the morning sector and recedes to high latitude in the afternoon. A positive storm effect is separated by geomagnetic latitudes and magnetic local time. Furthermore, ionospheric responses at different local time sectors with respect to the storm commencement shows very different developing processes corresponding to the evolution of the geomagnetic storm. A daytime positive storm effect is shown to be more prominent in the American region than those in the Asian and European regions, which may suggest a longitudinal effect of the ionospheric storm.

[1]  Gerd W. Prölss,et al.  On explaining the local time variation of ionospheric storm effects , 1993 .

[2]  M. A. Abdu,et al.  South Atlantic magnetic anomaly ionization: A review and a new focus on electrodynamic effects in the equatorial ionosphere , 2005 .

[3]  Michael Mendillo,et al.  Storms in the ionosphere: Patterns and processes for total electron content , 2006 .

[4]  Xiaoqing Pi,et al.  Monitoring of global ionospheric irregularities using the Worldwide GPS Network , 1997 .

[5]  T. L. Schumaker,et al.  The relationship between diffuse auroral and plasma sheet electron distributions near local midnight , 1989 .

[6]  E. R. de Paula,et al.  Magnetospheric disturbance effects on the Equatorial Ionization Anomaly (EIA) : an overview , 1991 .

[7]  X. Pi,et al.  Advection of the equatorial anomaly over Arecibo by small‐storm related disturbance dynamo electric fields , 2000 .

[8]  Philip J. Erickson,et al.  Ionospheric signatures of plasmaspheric tails , 2002 .

[9]  Kevin M. Lyons,et al.  A large survey of electron acceleration events , 1996 .

[10]  H. Rishbeth,et al.  Geomagnetic storms in the Antarctic F-region. II. Physical interpretation , 1989 .

[11]  L. Scherliess,et al.  Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances , 1995 .

[12]  P. Field,et al.  The response of the ionospheric F2-layer to geomagnetic activity: an analysis of worldwide data , 1997 .

[13]  J. Foster Storm time plasma transport at middle and high latitudes , 1993 .

[14]  B. M. Reddy,et al.  A comparative study of global ionospheric responses to intense magnetic storm conditions , 1998 .

[15]  Timothy Fuller-Rowell,et al.  On the seasonal response of the thermosphere and ionosphere to geomagnetic storms , 1996 .

[16]  R. Duncan F REGION SEASONAL AND MAGNETIC-STORM BEHAVIOUR. , 1969 .

[17]  Anthony J. Mannucci,et al.  A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model , 1997 .

[18]  Mark B. Moldwin,et al.  Unusual topside ionospheric density response to the November 2003 superstorm , 2005 .

[19]  Y. Kasahara,et al.  Corotating solar wind streams and recurrent geomagnetic activity: A review , 2006 .

[20]  P. Field,et al.  Modelling composition changes in F-layer storms , 1998 .

[21]  N. Spencer,et al.  Some properties of upper atmosphere dynamics , 1978 .

[22]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[23]  R. Rüster,et al.  Negative ionospheric storms caused by thermospheric winds , 1976 .

[24]  C. E. Rasmussen,et al.  Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989 , 1991 .

[25]  T. Fuller‐Rowell,et al.  More total electron content climatology from TOPEX/Poseidon measurements , 2001 .

[26]  R. Sica,et al.  Ionization from soft electron precipitation in the auroral F region , 1989 .

[27]  Timothy Fuller-Rowell,et al.  Response of the thermosphere and ionosphere to geomagnetic storms , 1994 .

[28]  X. Pi,et al.  Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere , 2003 .

[29]  Libo Liu,et al.  Responses of equatorial anomaly to the October-November 2003 superstorms , 2005 .

[30]  Xiaoqing Pi,et al.  Global ionosphere perturbations monitored by the Worldwide GPS Network , 1996 .

[31]  Anthony J. Mannucci,et al.  A global mapping technique for GPS‐derived ionospheric total electron content measurements , 1998 .

[32]  E. Essex,et al.  Enhancements of ionospheric total electron content in the southern auroral zone associated with magnetospheric substorms , 1973 .

[33]  J. Klobuchar,et al.  Ionospheric storm effects at subauroral latitudes: A case study , 1991 .

[34]  E. Yizengaw,et al.  Southern Hemisphere ionosphere and plasmasphere response to the interplanetary shock event of 29–31 October 2003 , 2005 .

[35]  L. Thomas,et al.  THE ONSET OF THE F-REGION DISTURBANCE AT MIDDLE LATITUDES DURING MAGNETIC STORMS , 1966 .

[36]  T. Fuller‐Rowell,et al.  Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm : A computational study , 1987 .

[37]  Gerd W. Prölss,et al.  Classification and mean behavior of magnetic storms , 1997 .

[38]  J. Klobuchar,et al.  Investigations of the ionospheric F region using multistation total electron content observations , 1975 .

[39]  M. Buonsanto Ionospheric Storms — A Review , 1999 .

[40]  D. Eccles,et al.  The effects of thermospheric winds on the ionosphere at low and middle latitudes during magnetic disturbances , 1973 .

[41]  A. Komjathy,et al.  Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms” , 2005 .

[42]  S. Watanabe,et al.  Total electron content behavior over Japan during geomagnetic storms , 2005 .

[43]  L. Scherliess,et al.  Storm time dependence of equatorial disturbance dynamo zonal electric fields , 1997 .

[44]  M. Kelley,et al.  Analysis of ground-based and satellite observations of F-region behavior during the great magnetic storm of July 15, 2000 , 2003 .

[45]  R. Schunk,et al.  Analysis of TEC data from the TOPEX/Poseidon mission , 2004 .

[46]  J. Titheridge,et al.  A comparison of northern and southern hemisphere TEC storm behaviour , 1988 .

[47]  T. Turunen,et al.  Comparison of simultaneous satellite measurements of auroral particle precipitation with bottomside ionosonde measurements of the electron density in the F-region , 1972 .

[48]  Arthur D. Richmond,et al.  The ionospheric disturbance dynamo , 1980 .

[49]  W. Deng,et al.  Geomagnetic storm effects in the low‐ to middle‐latitude upper thermosphere , 1995 .

[50]  Keith M. Groves,et al.  Response of the equatorial ionosphere in the South Atlantic Region to the Great Magnetic Storm of July 15, 2000 , 2001 .

[51]  S. Matsushita A study of the morphology of ionospheric storms , 1959 .

[52]  L. Cander On the global and regional behaviour of the mid-latitude ionosphere , 1993 .

[53]  Toshitaka Tsuda,et al.  Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields , 2004 .

[54]  K. Davies,et al.  Recent progress in satellite radio beacon studies with particular emphasis on the ATS-6 radio beacon experiment , 1980 .